BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33285428)

  • 1. The plastid proteome of the nonphotosynthetic chlorophycean alga Polytomella parva.
    Fuentes-Ramírez EO; Vázquez-Acevedo M; Cabrera-Orefice A; Guerrero-Castillo S; González-Halphen D
    Microbiol Res; 2021 Feb; 243():126649. PubMed ID: 33285428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A plastid without a genome: evidence from the nonphotosynthetic green algal genus Polytomella.
    Smith DR; Lee RW
    Plant Physiol; 2014 Apr; 164(4):1812-9. PubMed ID: 24563281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Plastid Genome of Polytoma uvella Is the Largest Known among Colorless Algae and Plants and Reflects Contrasting Evolutionary Paths to Nonphotosynthetic Lifestyles.
    Figueroa-Martinez F; Nedelcu AM; Smith DR; Reyes-Prieto A
    Plant Physiol; 2017 Feb; 173(2):932-943. PubMed ID: 27932420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleotide diversity of the colorless green alga Polytomella parva (Chlorophyceae, Chlorophyta): high for the mitochondrial telomeres, surprisingly low everywhere else.
    Smith DR; Lee RW
    J Eukaryot Microbiol; 2011; 58(5):471-3. PubMed ID: 21762422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleus-encoded genes for plastid-targeted proteins in Helicosporidium: functional diversity of a cryptic plastid in a parasitic alga.
    de Koning AP; Keeling PJ
    Eukaryot Cell; 2004 Oct; 3(5):1198-205. PubMed ID: 15470248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of N-acetyl-l-glutamate kinase with the PII signal transducer in the non-photosynthetic alga Polytomella parva: Co-evolution towards a hetero-oligomeric enzyme.
    Selim KA; Lapina T; Forchhammer K; Ermilova E
    FEBS J; 2020 Feb; 287(3):465-482. PubMed ID: 31287617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Cryptic Plastid of
    Füssy Z; Záhonová K; Tomčala A; Krajčovič J; Yurchenko V; Oborník M; Eliáš M
    mSphere; 2020 Oct; 5(5):. PubMed ID: 33087518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerated evolution of functional plastid rRNA and elongation factor genes due to reduced protein synthetic load after the loss of photosynthesis in the chlorophyte alga Polytoma.
    Vernon D; Gutell RR; Cannone JJ; Rumpf RW; Birky CW
    Mol Biol Evol; 2001 Sep; 18(9):1810-22. PubMed ID: 11504860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of fragmented mitochondrial ribosomal RNAs of the colorless green alga Polytomella parva.
    Fan J; Schnare MN; Lee RW
    Nucleic Acids Res; 2003 Jan; 31(2):769-78. PubMed ID: 12527787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gel-based proteomic map of Arabidopsis thaliana root plastids and mitochondria.
    Grabsztunowicz M; Rokka A; Farooq I; Aro EM; Mulo P
    BMC Plant Biol; 2020 Sep; 20(1):413. PubMed ID: 32887556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Next-generation sequencing data suggest that certain nonphotosynthetic green plants have lost their plastid genomes.
    Smith DR; Asmail SR
    New Phytol; 2014 Oct; 204(1):7-11. PubMed ID: 24962290
    [No Abstract]   [Full Text] [Related]  

  • 12. Mitochondrial and plastid genomes of the colonial green alga Gonium pectorale give insights into the origins of organelle DNA architecture within the volvocales.
    Hamaji T; Smith DR; Noguchi H; Toyoda A; Suzuki M; Kawai-Toyooka H; Fujiyama A; Nishii I; Marriage T; Olson BJ; Nozaki H
    PLoS One; 2013; 8(2):e57177. PubMed ID: 23468928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial genome of the colorless green alga Polytomella parva: two linear DNA molecules with homologous inverted repeat Termini.
    Fan J; Lee RW
    Mol Biol Evol; 2002 Jul; 19(7):999-1007. PubMed ID: 12082120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Non-photosynthetic Diatom Reveals Early Steps of Reductive Evolution in Plastids.
    Kamikawa R; Moog D; Zauner S; Tanifuji G; Ishida KI; Miyashita H; Mayama S; Hashimoto T; Maier UG; Archibald JM; Inagaki Y
    Mol Biol Evol; 2017 Sep; 34(9):2355-2366. PubMed ID: 28549159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arginine-Dependent Nitric Oxide Generation and S-Nitrosation in the Non-Photosynthetic Unicellular Alga
    Lapina T; Statinov V; Puzanskiy R; Ermilova E
    Antioxidants (Basel); 2022 May; 11(5):. PubMed ID: 35624813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple metabolic roles for the nonphotosynthetic plastid of the green alga Prototheca wickerhamii.
    Borza T; Popescu CE; Lee RW
    Eukaryot Cell; 2005 Feb; 4(2):253-61. PubMed ID: 15701787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mitochondrial and plastid genomes of Volvox carteri: bloated molecules rich in repetitive DNA.
    Smith DR; Lee RW
    BMC Genomics; 2009 Mar; 10():132. PubMed ID: 19323823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the Limits and Causes of Plastid Genome Expansion in Volvocine Green Algae.
    Gaouda H; Hamaji T; Yamamoto K; Kawai-Toyooka H; Suzuki M; Noguchi H; Minakuchi Y; Toyoda A; Fujiyama A; Nozaki H; Smith DR
    Genome Biol Evol; 2018 Sep; 10(9):2248-2254. PubMed ID: 30102347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the bacterial contribution to the plastid proteome.
    Qiu H; Price DC; Weber AP; Facchinelli F; Yoon HS; Bhattacharya D
    Trends Plant Sci; 2013 Dec; 18(12):680-7. PubMed ID: 24139901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Dunaliella salina organelle genomes: large sequences, inflated with intronic and intergenic DNA.
    Smith DR; Lee RW; Cushman JC; Magnuson JK; Tran D; Polle JE
    BMC Plant Biol; 2010 May; 10():83. PubMed ID: 20459666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.