BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33285527)

  • 21. A dual-ink 3D printing strategy to engineer pre-vascularized bone scaffolds in-vitro.
    Twohig C; Helsinga M; Mansoorifar A; Athirasala A; Tahayeri A; França CM; Pajares SA; Abdelmoniem R; Scherrer S; Durual S; Ferracane J; Bertassoni LE
    Mater Sci Eng C Mater Biol Appl; 2021 Apr; 123():111976. PubMed ID: 33812604
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human-scale tissues with patterned vascular networks by additive manufacturing of sacrificial sugar-protein composites.
    Eltaher HM; Abukunna FE; Ruiz-Cantu L; Stone Z; Yang J; Dixon JE
    Acta Biomater; 2020 Sep; 113():339-349. PubMed ID: 32553918
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessment of hydrogels for bioprinting of endothelial cells.
    Benning L; Gutzweiler L; Tröndle K; Riba J; Zengerle R; Koltay P; Zimmermann S; Stark GB; Finkenzeller G
    J Biomed Mater Res A; 2018 Apr; 106(4):935-947. PubMed ID: 29119674
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication of biomimetic vascular scaffolds for 3D tissue constructs using vascular corrosion casts.
    Huling J; Ko IK; Atala A; Yoo JJ
    Acta Biomater; 2016 Mar; 32():190-197. PubMed ID: 26772527
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Research and development of 3D printed vasculature constructs.
    Li X; Liu L; Zhang X; Xu T
    Biofabrication; 2018 Apr; 10(3):032002. PubMed ID: 29637901
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineering of a complex bone tissue model with endothelialised channels and capillary-like networks.
    Klotz BJ; Lim KS; Chang YX; Soliman BG; Pennings I; Melchels FPW; Woodfield TBF; Rosenberg AJ; Malda J; Gawlitta D
    Eur Cell Mater; 2018 May; 35():335-348. PubMed ID: 29873804
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent Advances on Bioprinted Gelatin Methacrylate-Based Hydrogels for Tissue Repair.
    Rajabi N; Rezaei A; Kharaziha M; Bakhsheshi-Rad HR; Luo H; RamaKrishna S; Berto F
    Tissue Eng Part A; 2021 Jun; 27(11-12):679-702. PubMed ID: 33499750
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prevascularization of 3D printed bone scaffolds by bioactive hydrogels and cell co-culture.
    Kuss MA; Wu S; Wang Y; Untrauer JB; Li W; Lim JY; Duan B
    J Biomed Mater Res B Appl Biomater; 2018 Jul; 106(5):1788-1798. PubMed ID: 28901689
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications.
    Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A
    Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glycerylphytate as an ionic crosslinker for 3D printing of multi-layered scaffolds with improved shape fidelity and biological features.
    Mora-Boza A; Włodarczyk-Biegun MK; Del Campo A; Vázquez-Lasa B; Román JS
    Biomater Sci; 2019 Dec; 8(1):506-516. PubMed ID: 31764919
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Co-culture of human umbilical vein endothelial cells and human bone marrow stromal cells into a micro-cavitary gelatin-methacrylate hydrogel system to enhance angiogenesis.
    Liu J; Chuah YJ; Fu J; Zhu W; Wang DA
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():906-916. PubMed ID: 31147062
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering microvasculature by 3D bioprinting of prevascularized spheroids in photo-crosslinkable gelatin.
    De Moor L; Smet J; Plovyt M; Bekaert B; Vercruysse C; Asadian M; De Geyter N; Van Vlierberghe S; Dubruel P; Declercq H
    Biofabrication; 2021 Sep; 13(4):. PubMed ID: 34496350
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Micropatterning electrospun scaffolds to create intrinsic vascular networks.
    Jeffries EM; Nakamura S; Lee KW; Clampffer J; Ijima H; Wang Y
    Macromol Biosci; 2014 Nov; 14(11):1514-20. PubMed ID: 25142314
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SAM-based cell transfer to photopatterned hydrogels for microengineering vascular-like structures.
    Sadr N; Zhu M; Osaki T; Kakegawa T; Yang Y; Moretti M; Fukuda J; Khademhosseini A
    Biomaterials; 2011 Oct; 32(30):7479-90. PubMed ID: 21802723
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automated 3D bioassembly of micro-tissues for biofabrication of hybrid tissue engineered constructs.
    Mekhileri NV; Lim KS; Brown GCJ; Mutreja I; Schon BS; Hooper GJ; Woodfield TBF
    Biofabrication; 2018 Jan; 10(2):024103. PubMed ID: 29199637
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tissue-mimicking gelatin scaffolds by alginate sacrificial templates for adipose tissue engineering.
    Contessi Negrini N; Bonnetier M; Giatsidis G; Orgill DP; Farè S; Marelli B
    Acta Biomater; 2019 Mar; 87():61-75. PubMed ID: 30654214
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sacrificial 3D printing of shrinkable silicone elastomers for enhanced feature resolution in flexible tissue scaffolds.
    Davoodi E; Montazerian H; Khademhosseini A; Toyserkani E
    Acta Biomater; 2020 Nov; 117():261-272. PubMed ID: 33031967
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synchronous 3D Bioprinting of Large-Scale Cell-Laden Constructs with Nutrient Networks.
    Shao L; Gao Q; Xie C; Fu J; Xiang M; He Y
    Adv Healthc Mater; 2020 Aug; 9(15):e1901142. PubMed ID: 31846229
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs.
    Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K
    Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multi-casting approach for vascular networks in cellularized hydrogels.
    Justin AW; Brooks RA; Markaki AE
    J R Soc Interface; 2016 Dec; 13(125):. PubMed ID: 27928031
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.