These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33285527)

  • 41. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability.
    Billiet T; Gevaert E; De Schryver T; Cornelissen M; Dubruel P
    Biomaterials; 2014 Jan; 35(1):49-62. PubMed ID: 24112804
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Designs and applications of electrohydrodynamic 3D printing.
    Gao D; Zhou JG
    Int J Bioprint; 2019; 5(1):172. PubMed ID: 32782979
    [TBL] [Abstract][Full Text] [Related]  

  • 43. 3D printing of self-standing and vascular supportive multimaterial hydrogel structures for organ engineering.
    Liu S; Hu Q; Shen Z; Krishnan S; Zhang H; Ramalingam M
    Biotechnol Bioeng; 2022 Jan; 119(1):118-133. PubMed ID: 34617587
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrohydrodynamic 3D printing of layer-specifically oriented, multiscale conductive scaffolds for cardiac tissue engineering.
    Lei Q; He J; Li D
    Nanoscale; 2019 Aug; 11(32):15195-15205. PubMed ID: 31380883
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Designing Gelatin Methacryloyl (GelMA)-Based Bioinks for Visible Light Stereolithographic 3D Biofabrication.
    Kumar H; Sakthivel K; Mohamed MGA; Boras E; Shin SR; Kim K
    Macromol Biosci; 2021 Jan; 21(1):e2000317. PubMed ID: 33043610
    [TBL] [Abstract][Full Text] [Related]  

  • 46. On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels.
    Lee W; Lee V; Polio S; Keegan P; Lee JH; Fischer K; Park JK; Yoo SS
    Biotechnol Bioeng; 2010 Apr; 105(6):1178-86. PubMed ID: 19953677
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biofabrication of three-dimensional cellular structures based on gelatin methacrylate-alginate interpenetrating network hydrogel.
    Krishnamoorthy S; Zhang Z; Xu C
    J Biomater Appl; 2019 Mar; 33(8):1105-1117. PubMed ID: 30636494
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electrohydrodynamic Inkjet Printing of Three-Dimensional Perovskite Nanocrystal Arrays for Full-Color Micro-LED Displays.
    Chen Y; Yang X; Fan X; Kang A; Kong X; Chen G; Zhong C; Lu Y; Fan Y; Hou X; Wu T; Chen Z; Wang S; Lin Y
    ACS Appl Mater Interfaces; 2024 May; 16(19):24908-24919. PubMed ID: 38706177
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Three-Dimensional-Printable Thermo/Photo-Cross-Linked Methacrylated Chitosan-Gelatin Hydrogel Composites for Tissue Engineering.
    Osi AR; Zhang H; Chen J; Zhou Y; Wang R; Fu J; Müller-Buschbaum P; Zhong Q
    ACS Appl Mater Interfaces; 2021 May; 13(19):22902-22913. PubMed ID: 33960765
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 3D Bioprinting of Carbohydrazide-Modified Gelatin into Microparticle-Suspended Oxidized Alginate for the Fabrication of Complex-Shaped Tissue Constructs.
    Heo DN; Alioglu MA; Wu Y; Ozbolat V; Ayan B; Dey M; Kang Y; Ozbolat IT
    ACS Appl Mater Interfaces; 2020 May; 12(18):20295-20306. PubMed ID: 32274920
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electrohydrodynamic jet 3D printing in biomedical applications.
    Wu Y
    Acta Biomater; 2021 Jul; 128():21-41. PubMed ID: 33905945
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An in vitro vascular chip using 3D printing-enabled hydrogel casting.
    Yang L; Shridhar SV; Gerwitz M; Soman P
    Biofabrication; 2016 Aug; 8(3):035015. PubMed ID: 27563030
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bio-resin for high resolution lithography-based biofabrication of complex cell-laden constructs.
    Lim KS; Levato R; Costa PF; Castilho MD; Alcala-Orozco CR; van Dorenmalen KMA; Melchels FPW; Gawlitta D; Hooper GJ; Malda J; Woodfield TBF
    Biofabrication; 2018 May; 10(3):034101. PubMed ID: 29693552
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-resolution electrohydrodynamic bioprinting: a new biofabrication strategy for biomimetic micro/nanoscale architectures and living tissue constructs.
    He J; Zhang B; Li Z; Mao M; Li J; Han K; Li D
    Biofabrication; 2020 Jul; 12(4):042002. PubMed ID: 32615543
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hybrid Printing Using Cellulose Nanocrystals Reinforced GelMA/HAMA Hydrogels for Improved Structural Integration.
    Fan Y; Yue Z; Lucarelli E; Wallace GG
    Adv Healthc Mater; 2020 Dec; 9(24):e2001410. PubMed ID: 33200584
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy.
    Yin J; Yan M; Wang Y; Fu J; Suo H
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Printing cell-laden gelatin constructs by free-form fabrication and enzymatic protein crosslinking.
    Irvine SA; Agrawal A; Lee BH; Chua HY; Low KY; Lau BC; Machluf M; Venkatraman S
    Biomed Microdevices; 2015 Feb; 17(1):16. PubMed ID: 25653062
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Preparation of a scaffold for a vascular network channel with spatially varying diameter based on sucrose.
    Chen S; Gao Q; Hu Q; Zhang H
    Biomed Mater; 2023 Sep; 18(6):. PubMed ID: 37691568
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes.
    Maiullari F; Costantini M; Milan M; Pace V; Chirivì M; Maiullari S; Rainer A; Baci D; Marei HE; Seliktar D; Gargioli C; Bearzi C; Rizzi R
    Sci Rep; 2018 Sep; 8(1):13532. PubMed ID: 30201959
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fabrication of circular microfluidic network in enzymatically-crosslinked gelatin hydrogel.
    He J; Chen R; Lu Y; Zhan L; Liu Y; Li D; Jin Z
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():53-60. PubMed ID: 26652348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.