These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33285555)

  • 1. Red blood cell hitchhiking enhances the accumulation of nano- and micro-particles in the constriction of a stenosed microvessel.
    Ye H; Shen Z; Wei M; Li Y
    Soft Matter; 2021 Jan; 17(1):40-56. PubMed ID: 33285555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical Simulations of the Motion and Deformation of Three RBCs during Poiseuille Flow through a Constricted Vessel Using IB-LBM.
    Wang R; Wei Y; Wu C; Sun L; Zheng W
    Comput Math Methods Med; 2018; 2018():9425375. PubMed ID: 29681999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational analysis of nitric oxide biotransport in a microvessel influenced by red blood cells.
    Wei Y; Mu L; Tang Y; Shen Z; He Y
    Microvasc Res; 2019 Sep; 125():103878. PubMed ID: 31051161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anomalous Vascular Dynamics of Nanoworms within Blood Flow.
    Ye H; Shen Z; Yu L; Wei M; Li Y
    ACS Biomater Sci Eng; 2018 Jan; 4(1):66-77. PubMed ID: 33418679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of red blood cell aggregation on the blood flow in a symmetrical stenosed microvessel.
    Xiao LL; Lin CS; Chen S; Liu Y; Fu BM; Yan WW
    Biomech Model Mechanobiol; 2020 Feb; 19(1):159-171. PubMed ID: 31297646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulation of motion and deformation of healthy and sick red blood cell through a constricted vessel using hybrid lattice Boltzmann-immersed boundary method.
    Hassanzadeh A; Pourmahmoud N; Dadvand A
    Comput Methods Biomech Biomed Engin; 2017 May; 20(7):737-749. PubMed ID: 28387168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dynamics of a healthy and infected red blood cell in flow through constricted channels: A DPD simulation.
    Hoque SZ; Anand DV; Patnaik BSV
    Int J Numer Method Biomed Eng; 2018 Sep; 34(9):e3105. PubMed ID: 29790664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Red blood cell motion and deformation in a curved microvessel.
    Ye T; Phan-Thien N; Lim CT; Li Y
    J Biomech; 2017 Dec; 65():12-22. PubMed ID: 29102268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of a single red blood cell flowing through a microvessel stenosis using dissipative particle dynamics.
    Xiao LL; Chen S; Lin CS; Liu Y
    Mol Cell Biomech; 2014 Mar; 11(1):67-85. PubMed ID: 25330624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic analysis of pressure drop and flow behavior in hypertensive micro vessels.
    Hu R; Li F; Lv J; He Y; Lu D; Yamada T; Ono N
    Biomed Microdevices; 2015; 17(3):9959. PubMed ID: 26004808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Red blood cell motions in high-hematocrit blood flowing through a stenosed microchannel.
    Fujiwara H; Ishikawa T; Lima R; Matsuki N; Imai Y; Kaji H; Nishizawa M; Yamaguchi T
    J Biomech; 2009 May; 42(7):838-43. PubMed ID: 19268948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical investigation on red blood cell dynamics in microflow: Effect of cell deformability.
    Ju M; Leo HL; Kim S
    Clin Hemorheol Microcirc; 2017; 65(2):105-117. PubMed ID: 27447420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow of Red Blood Cells in Stenosed Microvessels.
    Vahidkhah K; Balogh P; Bagchi P
    Sci Rep; 2016 Jun; 6():28194. PubMed ID: 27319318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Margination of Particles in Areas of Constricted Blood Flow.
    Carboni EJ; Bognet BH; Cowles DB; Ma AWK
    Biophys J; 2018 May; 114(9):2221-2230. PubMed ID: 29742415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shear rate dependent margination of sphere-like, oblate-like and prolate-like micro-particles within blood flow.
    Ye H; Shen Z; Li Y
    Soft Matter; 2018 Sep; 14(36):7401-7419. PubMed ID: 30187053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of Deformation and Aggregation of Two Red Blood Cells in a Stenosed Microvessel by Dissipative Particle Dynamics.
    Xiao L; Liu Y; Chen S; Fu B
    Cell Biochem Biophys; 2016 Dec; 74(4):513-525. PubMed ID: 27704373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical behavior of the erythrocyte in microvessel stenosis.
    Zhang Z; Zhang X
    Sci China Life Sci; 2011 May; 54(5):450-8. PubMed ID: 21416230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical simulation of red blood cell behavior in a stenosed arteriole using the immersed boundary-lattice Boltzmann method.
    Vahidkhah K; Fatouraee N
    Int J Numer Method Biomed Eng; 2012 Feb; 28(2):239-56. PubMed ID: 25099328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries.
    Polwaththe-Gallage HN; Saha SC; Sauret E; Flower R; Senadeera W; Gu Y
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):161. PubMed ID: 28155717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of particle size and shape on their margination and wall-adhesion: implications in drug delivery vehicle design across nano-to-micro scale.
    Cooley M; Sarode A; Hoore M; Fedosov DA; Mitragotri S; Sen Gupta A
    Nanoscale; 2018 Aug; 10(32):15350-15364. PubMed ID: 30080212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.