These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 33285568)

  • 1. FEATS: feature selection-based clustering of single-cell RNA-seq data.
    Vans E; Patil A; Sharma A
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33285568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SAFE-clustering: Single-cell Aggregated (from Ensemble) clustering for single-cell RNA-seq data.
    Yang Y; Huh R; Culpepper HW; Lin Y; Love MI; Li Y
    Bioinformatics; 2019 Apr; 35(8):1269-1277. PubMed ID: 30202935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis.
    Geddes TA; Kim T; Nan L; Burchfield JG; Yang JYH; Tao D; Yang P
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):660. PubMed ID: 31870278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupled co-clustering-based unsupervised transfer learning for the integrative analysis of single-cell genomic data.
    Zeng P; Wangwu J; Lin Z
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33279962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An interpretable framework for clustering single-cell RNA-Seq datasets.
    Zhang JM; Fan J; Fan HC; Rosenfeld D; Tse DN
    BMC Bioinformatics; 2018 Mar; 19(1):93. PubMed ID: 29523077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joint learning dimension reduction and clustering of single-cell RNA-sequencing data.
    Wu W; Ma X
    Bioinformatics; 2020 Jun; 36(12):3825-3832. PubMed ID: 32246821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. scGNN 2.0: a graph neural network tool for imputation and clustering of single-cell RNA-Seq data.
    Gu H; Cheng H; Ma A; Li Y; Wang J; Xu D; Ma Q
    Bioinformatics; 2022 Nov; 38(23):5322-5325. PubMed ID: 36250784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving Single-Cell RNA-seq Clustering by Integrating Pathways.
    Zhang C; Gao L; Wang B; Gao Y
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33940590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DIMM-SC: a Dirichlet mixture model for clustering droplet-based single cell transcriptomic data.
    Sun Z; Wang T; Deng K; Wang XF; Lafyatis R; Ding Y; Hu M; Chen W
    Bioinformatics; 2018 Jan; 34(1):139-146. PubMed ID: 29036318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. coupleCoC+: An information-theoretic co-clustering-based transfer learning framework for the integrative analysis of single-cell genomic data.
    Zeng P; Lin Z
    PLoS Comput Biol; 2021 Jun; 17(6):e1009064. PubMed ID: 34077420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-cell RNA-seq interpretations using evolutionary multiobjective ensemble pruning.
    Li X; Zhang S; Wong KC
    Bioinformatics; 2019 Aug; 35(16):2809-2817. PubMed ID: 30596898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. scEFSC: Accurate single-cell RNA-seq data analysis via ensemble consensus clustering based on multiple feature selections.
    Bian C; Wang X; Su Y; Wang Y; Wong KC; Li X
    Comput Struct Biotechnol J; 2022; 20():2181-2197. PubMed ID: 35615016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A spectral clustering with self-weighted multiple kernel learning method for single-cell RNA-seq data.
    Qi R; Wu J; Guo F; Xu L; Zou Q
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33003206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FR-Match: robust matching of cell type clusters from single cell RNA sequencing data using the Friedman-Rafsky non-parametric test.
    Zhang Y; Aevermann BD; Bakken TE; Miller JA; Hodge RD; Lein ES; Scheuermann RH
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33249453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-cell RNA-seq data semi-supervised clustering and annotation via structural regularized domain adaptation.
    Chen L; He Q; Zhai Y; Deng M
    Bioinformatics; 2021 May; 37(6):775-784. PubMed ID: 33098418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. scGMAI: a Gaussian mixture model for clustering single-cell RNA-Seq data based on deep autoencoder.
    Yu B; Chen C; Qi R; Zheng R; Skillman-Lawrence PJ; Wang X; Ma A; Gu H
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33300547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FBA: feature barcoding analysis for single cell RNA-Seq.
    Duan J; Hon GC
    Bioinformatics; 2021 Nov; 37(22):4266-4268. PubMed ID: 33999185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SSCC: A Novel Computational Framework for Rapid and Accurate Clustering Large-scale Single Cell RNA-seq Data.
    Ren X; Zheng L; Zhang Z
    Genomics Proteomics Bioinformatics; 2019 Apr; 17(2):201-210. PubMed ID: 31202000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate feature selection improves single-cell RNA-seq cell clustering.
    Su K; Yu T; Wu H
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33611426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GMHCC: high-throughput analysis of biomolecular data using graph-based multiple hierarchical consensus clustering.
    Lu Y; Yu Z; Wang Y; Ma Z; Wong KC; Li X
    Bioinformatics; 2022 May; 38(11):3020-3028. PubMed ID: 35451457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.