These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33285795)

  • 21. Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence.
    Will S; Schraml S; Bader K; Leipertz A
    Appl Opt; 1998 Aug; 37(24):5647-58. PubMed ID: 18286051
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Light scattering and extinction measurements combined with laser-induced incandescence for the real-time determination of soot mass absorption cross section.
    Wei Y; Ma L; Cao T; Zhang Q; Wu J; Buseck PR; Thompson JE
    Anal Chem; 2013 Oct; 85(19):9181-8. PubMed ID: 23971631
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Are emissions of black carbon from gasoline vehicles underestimated? Insights from near and on-road measurements.
    Liggio J; Gordon M; Smallwood G; Li SM; Stroud C; Staebler R; Lu G; Lee P; Taylor B; Brook JR
    Environ Sci Technol; 2012 May; 46(9):4819-28. PubMed ID: 22309316
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simultaneous determination of primary particle size distribution and thermal accommodation coefficient of soot aggregates using low-fluence LII.
    Zhang JY; Qi H; Shi JW; Gao BH; Ren YT
    Opt Express; 2020 Dec; 28(25):37249-37264. PubMed ID: 33379563
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of Pressure on Burning and Soot Characteristics of RP-3 Kerosene Droplets under Sub-Atmospheric Pressure.
    Huang J; He Y; Zhang H; Dai Y; Wang Z
    ACS Omega; 2023 Apr; 8(15):14053-14065. PubMed ID: 37091373
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative investigation of soot distribution by laser-induced incandescence.
    Bryce DJ; Ladommatos N; Zhao H
    Appl Opt; 2000 Sep; 39(27):5012-22. PubMed ID: 18350100
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Time-Resolved Laser-Induced Incandescence Measurements on Aerosolized Nickel Nanoparticles.
    Robinson-Enebeli S; Talebi-Moghaddam S; Daun KJ
    J Phys Chem A; 2021 Jul; 125(28):6273-6285. PubMed ID: 34240871
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Laser-induced incandescence measurements of soot in turbulent pool fires.
    Frederickson K; Kearney SP; Grasser TW
    Appl Opt; 2011 Feb; 50(4):A49-59. PubMed ID: 21283220
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence.
    Ni T; Pinson JA; Gupta S; Santoro RJ
    Appl Opt; 1995 Oct; 34(30):7083-91. PubMed ID: 21060570
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of diesel engine combustion parameters on primary soot particle diameter.
    Mathis U; Mohr M; Kaegi R; Bertola A; Boulouchos K
    Environ Sci Technol; 2005 Mar; 39(6):1887-92. PubMed ID: 15819252
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Laser-induced incandescence applied to droplet combustion.
    Wal RL; Dietrich DL
    Appl Opt; 1995 Feb; 34(6):1103-7. PubMed ID: 21037639
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Soot formation and oxidation in oscillating methane-air diffusion flames at elevated pressure.
    Hentschel J; Suntz R; Bockhorn H
    Appl Opt; 2005 Nov; 44(31):6673-81. PubMed ID: 16270556
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Determination of primary particle size distributions from time-resolved laser-induced incandescence measurements.
    Dankers S; Leipertz A
    Appl Opt; 2004 Jun; 43(18):3726-31. PubMed ID: 15218614
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Soot volume fraction and particle size measurements with laser-induced incandescence.
    Mewes B; Seitzman JM
    Appl Opt; 1997 Jan; 36(3):709-17. PubMed ID: 18250729
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single-pulse real-time billion-frames-per-second planar imaging of ultrafast nanoparticle-laser dynamics and temperature in flames.
    Mishra YN; Wang P; Bauer FJ; Zhang Y; Hanstorp D; Will S; Wang LV
    Light Sci Appl; 2023 Feb; 12(1):47. PubMed ID: 36807322
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sequential signal detection for high dynamic range time-resolved laser-induced incandescence.
    Mansmann R; Thomson K; Smallwood G; Dreier T; Schulz C
    Opt Express; 2017 Feb; 25(3):2413-2421. PubMed ID: 29519087
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simultaneous planar laser-induced incandescence, OH planar laser-induced fluorescence, and droplet Mie scattering in swirl-stabilized spray flames.
    Meyer TR; Roy S; Belovich VM; Corporan E; Gord JR
    Appl Opt; 2005 Jan; 44(3):445-54. PubMed ID: 15717834
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diesel soot combustion in air-NO environment: Evolution of soot physical properties and fragmentation characteristics.
    Wei J; He C; Zeng Y
    Sci Total Environ; 2024 Jan; 906():167412. PubMed ID: 37769740
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental investigation on an acoustically forced flame with simultaneous high-speed LII and stereo PIV at 20  kHz.
    Fu C; Yang X; Li Z; Zhang H; Yang Y; Gao Y
    Appl Opt; 2019 Apr; 58(10):C104-C111. PubMed ID: 31045080
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Understanding the difference in oxidative properties between flame and diesel soot nanoparticles: the role of metals.
    Kim SH; Fletcher RA; Zachariah MR
    Environ Sci Technol; 2005 Jun; 39(11):4021-6. PubMed ID: 15984778
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.