These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33285825)

  • 21. Homogeneous ice nucleation at moderate supercooling from molecular simulation.
    Sanz E; Vega C; Espinosa JR; Caballero-Bernal R; Abascal JL; Valeriani C
    J Am Chem Soc; 2013 Oct; 135(40):15008-17. PubMed ID: 24010583
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A physically constrained classical description of the homogeneous nucleation of ice in water.
    Koop T; Murray BJ
    J Chem Phys; 2016 Dec; 145(21):211915. PubMed ID: 28799369
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stability and Metastability of Liquid Water in a Machine-Learned Coarse-Grained Model with Short-Range Interactions.
    Dhabal D; Sankaranarayanan SKRS; Molinero V
    J Phys Chem B; 2022 Dec; 126(47):9881-9892. PubMed ID: 36383428
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of nucleation of methane hydrate crystals: Interfacial theory and molecular simulation.
    Mirzaeifard S; Servio P; Rey AD
    J Colloid Interface Sci; 2019 Dec; 557():556-567. PubMed ID: 31550648
    [TBL] [Abstract][Full Text] [Related]  

  • 25. TinyLev acoustically levitated water: Direct observation of collective, inter-droplet effects through morphological and thermal analysis of multiple droplets.
    McElligott A; Guerra A; Wood MJ; Rey AD; Kietzig AM; Servio P
    J Colloid Interface Sci; 2022 Aug; 619():84-95. PubMed ID: 35378478
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Homogeneous water nucleation: Experimental study on pressure and carrier gas effects.
    Campagna MM; Hrubý J; van Dongen MEH; Smeulders DMJ
    J Chem Phys; 2020 Oct; 153(16):164303. PubMed ID: 33138427
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Homogeneous freezing of water droplets for different volumes and cooling rates.
    Shardt N; Isenrich FN; Waser B; Marcolli C; Kanji ZA; deMello AJ; Lohmann U
    Phys Chem Chem Phys; 2022 Nov; 24(46):28213-28221. PubMed ID: 36413087
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of stacking disorder in ice nucleation.
    Lupi L; Hudait A; Peters B; Grünwald M; Gotchy Mullen R; Nguyen AH; Molinero V
    Nature; 2017 Nov; 551(7679):218-222. PubMed ID: 29120424
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular origins of homogeneous crystal nucleation.
    Yi P; Rutledge GC
    Annu Rev Chem Biomol Eng; 2012; 3():157-82. PubMed ID: 22468601
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analytical Determination of the Nucleation-Prone, Low-Density Fraction of Subcooled Water.
    Hellmuth O; Feistel R
    Entropy (Basel); 2020 Aug; 22(9):. PubMed ID: 33286702
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Classical nucleation theory of homogeneous freezing of water: thermodynamic and kinetic parameters.
    Ickes L; Welti A; Hoose C; Lohmann U
    Phys Chem Chem Phys; 2015 Feb; 17(8):5514-37. PubMed ID: 25627933
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Externally applied electric fields up to 1.6 × 10(5) V/m do not affect the homogeneous nucleation of ice in supercooled water.
    Stan CA; Tang SK; Bishop KJ; Whitesides GM
    J Phys Chem B; 2011 Feb; 115(5):1089-97. PubMed ID: 21174462
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antifreeze proteins and homogeneous nucleation: On the physical determinants impeding ice crystal growth.
    Bianco V; Espinosa JR; Vega C
    J Chem Phys; 2020 Sep; 153(9):091102. PubMed ID: 32891082
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetic aspects of the thermostatted growth of ice from supercooled water in simulations.
    Weiss VC; Rullich M; Köhler C; Frauenheim T
    J Chem Phys; 2011 Jul; 135(3):034701. PubMed ID: 21787017
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Faster Nucleation of Ice at the Three-Phase Contact Line: Influence of Interfacial Chemistry.
    Kar A; Bhati A; Lokanathan M; Bahadur V
    Langmuir; 2021 Nov; 37(43):12673-12680. PubMed ID: 34694119
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Classical nucleation theory of ice nucleation: Second-order corrections to thermodynamic parameters.
    Wang C; Wu J; Wang H; Zhang Z
    J Chem Phys; 2021 Jun; 154(23):234503. PubMed ID: 34241278
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Homogeneous ice nucleation in an ab initio machine-learning model of water.
    Piaggi PM; Weis J; Panagiotopoulos AZ; Debenedetti PG; Car R
    Proc Natl Acad Sci U S A; 2022 Aug; 119(33):e2207294119. PubMed ID: 35939708
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Does supercooled water retain its universal nucleation behavior under shear at high pressure?
    Srirangam S; Bhendale M; Singh JK
    Phys Chem Chem Phys; 2023 Aug; 25(32):21528-21537. PubMed ID: 37545252
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ice Ih vs. ice III along the homogeneous nucleation line.
    Espinosa JR; Diez AL; Vega C; Valeriani C; Ramirez J; Sanz E
    Phys Chem Chem Phys; 2019 Mar; 21(10):5655-5660. PubMed ID: 30793135
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Theoretical analysis of crystallization by homogeneous nucleation of water droplets.
    Tanaka KK; Kimura Y
    Phys Chem Chem Phys; 2019 Jan; 21(5):2410-2418. PubMed ID: 30649109
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.