These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 33285827)

  • 1. Key Node Ranking in Complex Networks: A Novel Entropy and Mutual Information-Based Approach.
    Li Y; Cai W; Li Y; Du X
    Entropy (Basel); 2019 Dec; 22(1):. PubMed ID: 33285827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Density-Based Entropy Centrality for Community Detection in Complex Networks.
    Žalik KR; Žalik M
    Entropy (Basel); 2023 Aug; 25(8):. PubMed ID: 37628226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Entropy-Based Centrality Approach for Identifying Vital Nodes in Weighted Networks.
    Qiao T; Shan W; Yu G; Liu C
    Entropy (Basel); 2018 Apr; 20(4):. PubMed ID: 33265352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying Important Nodes in Complex Networks Based on Node Propagation Entropy.
    Yu Y; Zhou B; Chen L; Gao T; Liu J
    Entropy (Basel); 2022 Feb; 24(2):. PubMed ID: 35205569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying Influential Nodes in Complex Networks Based on Information Entropy and Relationship Strength.
    Xi Y; Cui X
    Entropy (Basel); 2023 May; 25(5):. PubMed ID: 37238509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mechanics model based on information entropy for identifying influencers in complex networks.
    Li S; Xiao F
    Appl Intell (Dordr); 2023 Jan; ():1-20. PubMed ID: 36741743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying Influential Nodes in Complex Networks Based on Multiple Local Attributes and Information Entropy.
    Zhang J; Zhang Q; Wu L; Zhang J
    Entropy (Basel); 2022 Feb; 24(2):. PubMed ID: 35205587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Brain Complexity Measures Based on Information Theory.
    Bonmati E; Bardera A; Feixas M; Boada I
    Entropy (Basel); 2018 Jun; 20(7):. PubMed ID: 33265581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying vital nodes in complex networks by adjacency information entropy.
    Xu X; Zhu C; Wang Q; Zhu X; Zhou Y
    Sci Rep; 2020 Feb; 10(1):2691. PubMed ID: 32060330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hunting for vital nodes in complex networks using local information.
    Dong Z; Chen Y; Tricco TS; Li C; Hu T
    Sci Rep; 2021 Apr; 11(1):9190. PubMed ID: 33911157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eigenvalue-based entropy in directed complex networks.
    Sun Y; Zhao H; Liang J; Ma X
    PLoS One; 2021; 16(6):e0251993. PubMed ID: 34153043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influential nodes identification using network local structural properties.
    Wang B; Zhang J; Dai J; Sheng J
    Sci Rep; 2022 Feb; 12(1):1833. PubMed ID: 35115582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new structure entropy of complex networks based on nonextensive statistical mechanics and similarity of nodes.
    Wang B; Tan F; Zhu J; Wei D
    Math Biosci Eng; 2021 Apr; 18(4):3718-3732. PubMed ID: 34198409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive influence of topological location and neighbor information on identifying influential nodes in complex networks.
    Wang X; Yang Q; Liu M; Ma X
    PLoS One; 2021; 16(5):e0251208. PubMed ID: 34019580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entropy-Based Node Importance Identification Method for Public Transportation Infrastructure Coupled Networks: A Case Study of Chengdu.
    Zeng Z; Sun Y; Zhang X
    Entropy (Basel); 2024 Feb; 26(2):. PubMed ID: 38392414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Self-Information Weighting-Based Node Importance Ranking Method for Graph Data.
    Liu S; Gao H
    Entropy (Basel); 2022 Oct; 24(10):. PubMed ID: 37420491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring influential nodes using global and local information.
    Hu H; Sun Z; Wang F; Zhang L; Wang G
    Sci Rep; 2022 Dec; 12(1):22506. PubMed ID: 36581651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying influential nodes in complex networks using a gravity model based on the H-index method.
    Zhu S; Zhan J; Li X
    Sci Rep; 2023 Sep; 13(1):16404. PubMed ID: 37775622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Consistency and differences between centrality measures across distinct classes of networks.
    Oldham S; Fulcher B; Parkes L; Arnatkevic Iūtė A; Suo C; Fornito A
    PLoS One; 2019; 14(7):e0220061. PubMed ID: 31348798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.