These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 33285902)
1. Eigenvalues of Two-State Quantum Walks Induced by the Hadamard Walk. Endo S; Endo T; Komatsu T; Konno N Entropy (Basel); 2020 Jan; 22(1):. PubMed ID: 33285902 [TBL] [Abstract][Full Text] [Related]
2. Localization and fractality in inhomogeneous quantum walks with self-duality. Shikano Y; Katsura H Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031122. PubMed ID: 21230040 [TBL] [Abstract][Full Text] [Related]
3. Recurrence and Pólya number of quantum walks. Stefanák M; Jex I; Kiss T Phys Rev Lett; 2008 Jan; 100(2):020501. PubMed ID: 18232840 [TBL] [Abstract][Full Text] [Related]
4. Limit theorem for continuous-time quantum walk on the line. Konno N Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026113. PubMed ID: 16196650 [TBL] [Abstract][Full Text] [Related]
5. Quantum walks with tuneable self-avoidance in one dimension. Camilleri E; Rohde PP; Twamley J Sci Rep; 2014 Apr; 4():4791. PubMed ID: 24762398 [TBL] [Abstract][Full Text] [Related]
6. Discrete-Time Quantum Walk with Phase Disorder: Localization and Entanglement Entropy. Zeng M; Yong EH Sci Rep; 2017 Sep; 7(1):12024. PubMed ID: 28931906 [TBL] [Abstract][Full Text] [Related]
7. Topological Quantum Walks in Momentum Space with a Bose-Einstein Condensate. Xie D; Deng TS; Xiao T; Gou W; Chen T; Yi W; Yan B Phys Rev Lett; 2020 Feb; 124(5):050502. PubMed ID: 32083915 [TBL] [Abstract][Full Text] [Related]
8. Quantum random walks and piecewise deterministic evolutions. Blanchard P; Hongler MO Phys Rev Lett; 2004 Mar; 92(12):120601. PubMed ID: 15089658 [TBL] [Abstract][Full Text] [Related]
9. Simulation of quantum walks on a circle with polar molecules via optimal control. Ding YK; Zhang ZY; Liu JM J Chem Phys; 2023 Nov; 159(20):. PubMed ID: 38010330 [TBL] [Abstract][Full Text] [Related]
10. From classical to quantum walks with stochastic resetting on networks. Wald S; Böttcher L Phys Rev E; 2021 Jan; 103(1-1):012122. PubMed ID: 33601601 [TBL] [Abstract][Full Text] [Related]
11. Measuring the Winding Number in a Large-Scale Chiral Quantum Walk. Xu XY; Wang QQ; Pan WW; Sun K; Xu JS; Chen G; Tang JS; Gong M; Han YJ; Li CF; Guo GC Phys Rev Lett; 2018 Jun; 120(26):260501. PubMed ID: 30004718 [TBL] [Abstract][Full Text] [Related]
14. Finding structural anomalies in star graphs using quantum walks. Cottrell S; Hillery M Phys Rev Lett; 2014 Jan; 112(3):030501. PubMed ID: 24484125 [TBL] [Abstract][Full Text] [Related]
15. Coined quantum walks on the line: Disorder, entanglement, and localization. Yao LH; Wald S Phys Rev E; 2023 Aug; 108(2-1):024139. PubMed ID: 37723699 [TBL] [Abstract][Full Text] [Related]
16. Measuring graph similarity through continuous-time quantum walks and the quantum Jensen-Shannon divergence. Rossi L; Torsello A; Hancock ER Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022815. PubMed ID: 25768560 [TBL] [Abstract][Full Text] [Related]
17. A Quantum-Inspired Similarity Measure for the Analysis of Complete Weighted Graphs. Bai L; Rossi L; Cui L; Cheng J; Hancock ER IEEE Trans Cybern; 2020 Mar; 50(3):1264-1277. PubMed ID: 31295131 [TBL] [Abstract][Full Text] [Related]