BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33285910)

  • 1. Interaction and Entanglement of a Pair of Quantum Emitters near a Nanoparticle: Analysis beyond Electric-Dipole Approximation.
    Kosik M; Słowik K
    Entropy (Basel); 2020 Jan; 22(2):. PubMed ID: 33285910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of atomic systems with quantum vacuum beyond electric dipole approximation.
    Kosik M; Burlayenko O; Rockstuhl C; Fernandez-Corbaton I; Słowik K
    Sci Rep; 2020 Apr; 10(1):5879. PubMed ID: 32246018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of and interference among higher order multipole transitions in molecules near a plasmonic nanoantenna.
    Rusak E; Straubel J; Gładysz P; Göddel M; Kędziorski A; Kühn M; Weigend F; Rockstuhl C; Słowik K
    Nat Commun; 2019 Dec; 10(1):5775. PubMed ID: 31852897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifrequency multi-qubit entanglement based on plasmonic hot spots.
    Ren J; Wu T; Zhang X
    Sci Rep; 2015 Sep; 5():13941. PubMed ID: 26350051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum emitters near a metal nanoparticle: strong coupling and quenching.
    Delga A; Feist J; Bravo-Abad J; Garcia-Vidal FJ
    Phys Rev Lett; 2014 Jun; 112(25):253601. PubMed ID: 25014814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directional dipole radiations and long-range quantum entanglement mediated by hyperbolic metasurfaces.
    Fang W; Yang Y
    Opt Express; 2020 Oct; 28(22):32955-32977. PubMed ID: 33114969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Entanglement mediated by DC current induced nonreciprocal graphene plasmonics.
    Berres JA; Hassani Gangaraj SA; Hanson GW
    Opt Express; 2023 Jan; 31(2):2710-2725. PubMed ID: 36785279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong Coupling Dynamics of a Quantum Emitter near a Topological Insulator Nanoparticle.
    Thanopulos I; Yannopapas V; Paspalakis E
    Nanomaterials (Basel); 2023 Oct; 13(20):. PubMed ID: 37887938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A general formula for the rate of resonant transfer of energy between two electric multipole moments of arbitrary order using molecular quantum electrodynamics.
    Salam A
    J Chem Phys; 2005 Jan; 122(4):44112. PubMed ID: 15740240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance energy transfer and quantum entanglement mediated by epsilon-near-zero and other plasmonic waveguide systems.
    Li Y; Nemilentsau A; Argyropoulos C
    Nanoscale; 2019 Aug; 11(31):14635-14647. PubMed ID: 31343051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A theoretical investigation of the influence of gold nanosphere size on the decay and energy transfer rates and efficiencies of quantum emitters.
    Marocico CA; Zhang X; Bradley AL
    J Chem Phys; 2016 Jan; 144(2):024108. PubMed ID: 26772555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous emission of guided polaritons by quantum dot coupled to metallic nanowire: beyond the dipole approximation.
    Rukhlenko ID; Handapangoda D; Premaratne M; Fedorov AV; Baranov AV; Jagadish C
    Opt Express; 2009 Sep; 17(20):17570-81. PubMed ID: 19907541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collective multipole oscillations direct the plasmonic coupling at the nanojunction interfaces.
    Hooshmand N; El-Sayed MA
    Proc Natl Acad Sci U S A; 2019 Sep; 116(39):19299-19304. PubMed ID: 31488713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled Cavity-Free, Single-Photon Emission and Bipartite Entanglement of Near-Field-Excited Quantum Emitters.
    Bello F; Kongsuwan N; Donegan JF; Hess O
    Nano Lett; 2020 Aug; 20(8):5830-5836. PubMed ID: 32574498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling Single Photons from Discrete Quantum Emitters in WSe
    Blauth M; Jürgensen M; Vest G; Hartwig O; Prechtl M; Cerne J; Finley JJ; Kaniber M
    Nano Lett; 2018 Nov; 18(11):6812-6819. PubMed ID: 30153417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study of two-photon florescence in metallic nanoshells.
    Singh MR; Persaud PD; Yastrebov S
    Nanotechnology; 2020 Apr; 31(26):265203. PubMed ID: 32197263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling of Molecular Emitters and Plasmonic Cavities beyond the Point-Dipole Approximation.
    Neuman T; Esteban R; Casanova D; García-Vidal FJ; Aizpurua J
    Nano Lett; 2018 Apr; 18(4):2358-2364. PubMed ID: 29522686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collective super- and subradiant dynamics between distant optical quantum emitters.
    Tiranov A; Angelopoulou V; van Diepen CJ; Schrinski B; Sandberg OAD; Wang Y; Midolo L; Scholz S; Wieck AD; Ludwig A; Sørensen AS; Lodahl P
    Science; 2023 Jan; 379(6630):389-393. PubMed ID: 36701463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dipole-multipole plasmonic coupling between gold nanorods and titanium nitride nanoparticles for enhanced photothermal conversion.
    Xi M; Xu C; Zhong L; Liu C; Li N; Zhang S; Wang Z
    Phys Chem Chem Phys; 2024 Feb; 26(7):6196-6207. PubMed ID: 38305020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.