These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 33285951)

  • 1. Fractal-Like Flow-Fields with Minimum Entropy Production for Polymer Electrolyte Membrane Fuel Cells.
    Kizilova N; Sauermoser M; Kjelstrup S; Pollet BG
    Entropy (Basel); 2020 Feb; 22(2):. PubMed ID: 33285951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seeking minimum entropy production for a tree-like flow-field in a fuel cell.
    Sauermoser M; Kjelstrup S; Kizilova N; Pollet BG; Flekkøy EG
    Phys Chem Chem Phys; 2020 Apr; 22(13):6993-7003. PubMed ID: 32190866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal fractal tree-like microchannel networks with slip for laminar-flow-modified Murray's law.
    Jing D; Song S; Pan Y; Wang X
    Beilstein J Nanotechnol; 2018; 9():482-489. PubMed ID: 29515960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-Sectional Dimension Dependence of Electroosmotic Flow in Fractal Treelike Rectangular Microchannel Network.
    Jing D; Zhan X
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32143450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Refining Our Understanding of the Flow Through Coronary Artery Branches; Revisiting Murray's Law in Human Epicardial Coronary Arteries.
    Taylor DJ; Feher J; Halliday I; Hose DR; Gosling R; Aubiniere-Robb L; van 't Veer M; Keulards D; Tonino PAL; Rochette M; Gunn J; Morris PD
    Front Physiol; 2022; 13():871912. PubMed ID: 35600296
    [No Abstract]   [Full Text] [Related]  

  • 6. Peclet number analysis of cross-flow in porous gas diffusion layer of polymer electrolyte membrane fuel cell (PEMFC).
    Suresh PV; Jayanti S
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20120-20130. PubMed ID: 27074933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extension of Murray's law using a non-Newtonian model of blood flow.
    Revellin R; Rousset F; Baud D; Bonjour J
    Theor Biol Med Model; 2009 May; 6():7. PubMed ID: 19445663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation analysis of mixing in passive microchannel with fractal obstacles based on Murray's law.
    Chen X; Zhang Y; Wang J
    Comput Methods Biomech Biomed Engin; 2021 Nov; 24(15):1670-1678. PubMed ID: 33998932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Architecture of optimal transport networks.
    Durand M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016116. PubMed ID: 16486225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On deriving Murray's law from constrained minimization of flow resistance.
    Rosenberg E
    J Theor Biol; 2021 Mar; 512():110563. PubMed ID: 33359240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A generalized optimization principle for asymmetric branching in fluidic networks.
    Stephenson D; Lockerby DA
    Proc Math Phys Eng Sci; 2016 Jul; 472(2191):20160451. PubMed ID: 27493583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The evaluation of Murray's law in Psilotum nudum (Psilotaceae), an analogue of ancestral vascular plants.
    McCulloh KA; Sperry JS
    Am J Bot; 2005 Jun; 92(6):985-9. PubMed ID: 21652482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic design of microfluidic manifolds based on a generalised Murray's law.
    Emerson DR; Cieślicki K; Gu X; Barber RW
    Lab Chip; 2006 Mar; 6(3):447-54. PubMed ID: 16511629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dermal Lymphatic Capillaries Do Not Obey Murray's Law.
    Talkington AM; Davis RB; Datto NC; Goodwin ER; Miller LA; Caron KM
    Front Cardiovasc Med; 2022; 9():840305. PubMed ID: 35498025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impacts of non-uniform filament feed spacers characteristics on the hydraulic and anti-fouling performances in the spacer-filled membrane channels: Experiment and numerical simulation.
    Lin WC; Shao RP; Wang XM; Huang X
    Water Res; 2020 Oct; 185():116251. PubMed ID: 32771564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Universal Murray's law for optimised fluid transport in synthetic structures.
    Zhou B; Cheng Q; Chen Z; Chen Z; Liang D; Munro EA; Yun G; Kawai Y; Chen J; Bhowmick T; Padmanathan KK; Occhipinti LG; Matsumoto H; Gardner JW; Su BL; Hasan T
    Nat Commun; 2024 May; 15(1):3652. PubMed ID: 38714661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vessel scaling in evergreen angiosperm leaves conforms with Murray's law and area-filling assumptions: implications for plant size, leaf size and cold tolerance.
    Gleason SM; Blackman CJ; Gleason ST; McCulloh KA; Ocheltree TW; Westoby M
    New Phytol; 2018 Jun; 218(4):1360-1370. PubMed ID: 29603233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MRI-based quantification of outflow boundary conditions for computational fluid dynamics of stenosed human carotid arteries.
    Groen HC; Simons L; van den Bouwhuijsen QJ; Bosboom EM; Gijsen FJ; van der Giessen AG; van de Vosse FN; Hofman A; van der Steen AF; Witteman JC; van der Lugt A; Wentzel JJ
    J Biomech; 2010 Aug; 43(12):2332-8. PubMed ID: 20627249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lepidoptera demonstrate the relevance of Murray's Law to circulatory systems with tidal flow.
    Schachat SR; Boyce CK; Payne JL; Lentink D
    BMC Biol; 2021 Sep; 19(1):204. PubMed ID: 34526028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of simplified boundary conditions and aortic arch inclusion on CFD simulations in the mouse aorta: a comparison with mouse-specific reference data.
    Trachet B; Bols J; De Santis G; Vandenberghe S; Loeys B; Segers P
    J Biomech Eng; 2011 Dec; 133(12):121006. PubMed ID: 22206423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.