BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 33286032)

  • 41. An OWA Distance-Based, Single-Valued Neutrosophic Linguistic TOPSIS Approach for Green Supplier Evaluation and Selection in Low-Carbon Supply Chains.
    Chen J; Zeng S; Zhang C
    Int J Environ Res Public Health; 2018 Jul; 15(7):. PubMed ID: 29986549
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multi-criteria decision support framework for sustainable implementation of effective green supply chain management practices.
    Boutkhoum O; Hanine M; Boukhriss H; Agouti T; Tikniouine A
    Springerplus; 2016; 5(1):664. PubMed ID: 27350904
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optimal evaluation of crop residues for gasification in Ghana using integrated multi-criterial decision making techniques.
    Osei I; Addo A; Kemausuor F
    Heliyon; 2023 Oct; 9(10):e20553. PubMed ID: 37822638
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Multi-criteria decision-making for prioritizing photocatalytic processes followed by TiO
    Barjasteh-Askari F; Nabizadeh R; Najafpoor A; Davoudi M; Mahvi AH
    Sci Rep; 2023 May; 13(1):7086. PubMed ID: 37127696
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Group Decision Making Framework Based on Neutrosophic TOPSIS Approach for Smart Medical Device Selection.
    Abdel-Basset M; Manogaran G; Gamal A; Smarandache F
    J Med Syst; 2019 Jan; 43(2):38. PubMed ID: 30627801
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Using an innovative criteria weighting tool for stakeholders involvement to rank MSW facility sites with the AHP.
    De Feo G; De Gisi S
    Waste Manag; 2010 Nov; 30(11):2370-82. PubMed ID: 20444589
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A model for priority setting of health technology assessment: the experience of AHP-TOPSIS combination approach.
    Mobinizadeh M; Raeissi P; Nasiripour AA; Olyaeemanesh A; Tabibi SJ
    Daru; 2016 Apr; 24():10. PubMed ID: 27068692
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluation of supply sustainability of vaccine alternatives with multi-criteria decision-making methods.
    Yazıcı E; Üner Sİ; Demir A; Dinler S; Alakaş HM
    Int J Health Plann Manage; 2022 Jul; 37(4):2421-2444. PubMed ID: 35501891
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evaluating treatment modalities in chronic pain treatment by the multi-criteria decision making procedure.
    Sir E; Batur Sir GD
    BMC Med Inform Decis Mak; 2019 Oct; 19(1):191. PubMed ID: 31615483
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Near-Earth object hazardous impact: A Multi-Criteria Decision Making approach.
    Sánchez-Lozano JM; Fernández-Martínez M
    Sci Rep; 2016 Nov; 6():37055. PubMed ID: 27848986
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Supplier selection to support environmental sustainability: the stratified BWM TOPSIS method.
    Asadabadi MR; Ahmadi HB; Gupta H; Liou JJH
    Ann Oper Res; 2023; 322(1):321-344. PubMed ID: 35967839
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Novel Integration of IF-DEMATEL and TOPSIS for the Classifier Selection Problem in Assistive Technology Adoption for People with Dementia.
    Ortíz-Barrios MA; Garcia-Constantino M; Nugent C; Alfaro-Sarmiento I
    Int J Environ Res Public Health; 2022 Jan; 19(3):. PubMed ID: 35162153
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Streamlining apartment provider evaluation: A spherical fuzzy multi-criteria decision-making model.
    Nguyen PH; Tran TH; Thi Nguyen LA; Pham HA; Thi Pham MA
    Heliyon; 2023 Dec; 9(12):e22353. PubMed ID: 38144291
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The combination of fuzzy analytical hierarchical process and maximum entropy methods for the selection of wind farm location.
    Unal Cilek M; Guner ED; Tekin S
    Environ Sci Pollut Res Int; 2022 Sep; 29(43):65391-65406. PubMed ID: 35486277
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Assessment of consolidative multi-criteria decision making (C-MCDM) algorithms for optimal mapping of polymer materials in additive manufacturing: A case study of orthotic application.
    Mian SH; Abouel Nasr E; Moiduddin K; Saleh M; Abidi MH; Alkhalefah H
    Heliyon; 2024 May; 10(10):e30867. PubMed ID: 38770323
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multiple-Criteria Decision-Making and Sensitivity Analysis for Selection of Materials for Knee Implant Femoral Component.
    Kumar R; Dubey R; Singh S; Singh S; Prakash C; Nirsanametla Y; Królczyk G; Chudy R
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33924189
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A diversified AHP-tree approach for multiple-criteria supplier selection.
    Chen T
    Comput Manag Sci; 2021; 18(4):431-453. PubMed ID: 38624572
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A novel MCDM approach for design concept evaluation based on interval-valued picture fuzzy sets.
    Ma Q; Sun H; Chen Z; Tan Y
    PLoS One; 2023; 18(11):e0294596. PubMed ID: 38011124
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An Integrated Fuzzy AHP and Fuzzy TOPSIS Approach to Assess Sustainable Urban Development in an Emerging Economy.
    Dang VT; Wang J; Van-Thac Dang W
    Int J Environ Res Public Health; 2019 Aug; 16(16):. PubMed ID: 31412685
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Health-Care Waste Treatment Technology Selection Using the Interval 2-Tuple Induced TOPSIS Method.
    Lu C; You JX; Liu HC; Li P
    Int J Environ Res Public Health; 2016 Jun; 13(6):. PubMed ID: 27271652
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.