These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33286099)

  • 1. Effects of Diffusion Coefficients and Permanent Charge on Reversal Potentials in Ionic Channels.
    Mofidi H; Eisenberg B; Liu W
    Entropy (Basel); 2020 Mar; 22(3):. PubMed ID: 33286099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical Analysis on Current-Voltage Relations via Classical Poisson-Nernst-Planck Systems with Nonzero Permanent Charges under Relaxed Electroneutrality Boundary Conditions.
    Wang Y; Zhang L; Zhang M
    Membranes (Basel); 2023 Jan; 13(2):. PubMed ID: 36837634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New insights into the effects of small permanent charge on ionic flows: A higher order analysis.
    Mofidi H
    Math Biosci Eng; 2024 May; 21(5):6042-6076. PubMed ID: 38872569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competition between Cations via Classical Poisson-Nernst-Planck Models with Nonzero but Small Permanent Charges.
    Zhang M
    Membranes (Basel); 2021 Mar; 11(4):. PubMed ID: 33810305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of ionic flows via Poisson-Nernst-Planck systems with local hard-sphere potentials: Competition between cations.
    Bates PW; Chen JN; Zhang MJ
    Math Biosci Eng; 2020 May; 17(4):3736-3766. PubMed ID: 32987553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel.
    Chen D; Lear J; Eisenberg B
    Biophys J; 1997 Jan; 72(1):97-116. PubMed ID: 8994596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type calcium channels.
    Nonner W; Eisenberg B
    Biophys J; 1998 Sep; 75(3):1287-305. PubMed ID: 9726931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite ion size effects on I-V relations via Poisson-Nernst-Planck systems with two cations: A case study.
    Wang Y; Zhang M
    Math Biosci Eng; 2024 Jan; 21(2):1899-1916. PubMed ID: 38454667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fractional Poisson-Nernst-Planck Model for Ion Channels I: Basic Formulations and Algorithms.
    Chen D
    Bull Math Biol; 2017 Nov; 79(11):2696-2726. PubMed ID: 28940114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Singular perturbation analysis of the steady-state Poisson-Nernst-Planck system: Applications to ion channels.
    Singer A; Gillespie D; Norbury J; Eisenberg RS
    Eur J Appl Math; 2008; 19(5):541-569. PubMed ID: 19809600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charges, currents, and potentials in ionic channels of one conformation.
    Chen D; Eisenberg R
    Biophys J; 1993 May; 64(5):1405-21. PubMed ID: 7686784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved Poisson-Nernst-Planck ion channel model and numerical studies on effects of boundary conditions, membrane charges, and bulk concentrations.
    Chao Z; Xie D
    J Comput Chem; 2021 Oct; 42(27):1929-1943. PubMed ID: 34382702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A theory for the effects of neutral carriers such as the macrotetralide actin antibiotics on the electric properties of bilayer membranes.
    Ciani S; Eisenman G; Szabo G
    J Membr Biol; 1969 Dec; 1(1):1-36. PubMed ID: 24174040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poisson-Nernst-Planck Equations for Simulating Biomolecular Diffusion-Reaction Processes I: Finite Element Solutions.
    Lu B; Holst MJ; McCammon JA; Zhou YC
    J Comput Phys; 2010 Sep; 229(19):6979-6994. PubMed ID: 21709855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Singular perturbation solutions of steady-state Poisson-Nernst-Planck systems.
    Wang XS; He D; Wylie JJ; Huang H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022722. PubMed ID: 25353523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Second-order Poisson Nernst-Planck solver for ion channel transport.
    Zheng Q; Chen D; Wei GW
    J Comput Phys; 2011 Jun; 230(13):5239-5262. PubMed ID: 21552336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical methods for a Poisson-Nernst-Planck-Fermi model of biological ion channels.
    Liu JL; Eisenberg B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012711. PubMed ID: 26274207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A New Poisson-Nernst-Planck Model with Ion-Water Interactions for Charge Transport in Ion Channels.
    Chen D
    Bull Math Biol; 2016 Aug; 78(8):1703-26. PubMed ID: 27480225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model.
    Schuss Z; Nadler B; Eisenberg RS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036116. PubMed ID: 11580403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong electrolyte continuum theory solution for equilibrium profiles, diffusion limitation, and conductance in charged ion channels.
    Levitt DG
    Biophys J; 1985 Jul; 48(1):19-31. PubMed ID: 2410048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.