These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 33286461)

  • 1. Exergoeconomic Analysis of Corn Drying in a Novel Industrial Drying System.
    Li B; Li C; Huang J; Li C
    Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Exergoeconomic Analysis of a Gas-Type Industrial Drying System of Black Tea.
    Zeng Z; Li B; Han C; Wu W; Wang X; Xu J; Zheng Z; Ma B; Hu Z
    Entropy (Basel); 2022 May; 24(5):. PubMed ID: 35626539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of Exergetic, Energetic and Techno-Economic Analyses on a Gas-Type Industrial Drying System of Black Tea.
    Zeng Z; Li B; Han C; Wu W; Chen T; Dong C; Gao C; He Z; Zhang F
    Foods; 2022 Oct; 11(20):. PubMed ID: 37431027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy, Exergy, Exergoeconomic and Emergy-Based Exergoeconomic (Emergoeconomic) Analyses of a Biomass Combustion Waste Heat Recovery Organic Rankine Cycle.
    Effatpanah SK; Ahmadi MH; Delbari SH; Lorenzini G
    Entropy (Basel); 2022 Jan; 24(2):. PubMed ID: 35205502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exergy and Exergoeconomic Analyses of a Byproduct Gas-Based Combined Cycle Power Plant with Air Blade Cooling.
    Liu X; Liu F; Huo Z; Zhang Q
    ACS Omega; 2022 Feb; 7(6):4908-4920. PubMed ID: 35187310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exergy Analyses of Onion Drying by Convection: Influence of Dryer Parameters on Performance.
    Castro M; Román C; Echegaray M; Mazza G; Rodriguez R
    Entropy (Basel); 2018 Apr; 20(5):. PubMed ID: 33265401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exergoeconomic Analysis of a Mechanical Compression Refrigeration Unit Run by an ORC.
    Taban D; Apostol V; Grosu L; Balan MC; Pop H; Dobre C; Dobrovicescu A
    Entropy (Basel); 2023 Nov; 25(11):. PubMed ID: 37998223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced Exergy-Based Analysis of an Organic Rankine Cycle (ORC) for Waste Heat Recovery.
    Fergani Z; Morosuk T
    Entropy (Basel); 2023 Oct; 25(10):. PubMed ID: 37895596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exergoeconomic analysis of an industrial beverage mixer system.
    Okereke CJ; Lasode OA; Ohijeagbon IO
    Heliyon; 2020 Jul; 6(7):e04402. PubMed ID: 32715120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exergetic sustainability and economic analysis of hybrid solar-biomass dryer integrated with copper tubing as heat exchanger.
    Ndukwu MC; Simo-Tagne M; Abam FI; Onwuka OS; Prince S; Bennamoun L
    Heliyon; 2020 Feb; 6(2):e03401. PubMed ID: 32083216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy and exergy analysis of three leaved yam starch drying in a tray dryer: parametric, modelling and optimization studies.
    Nwosu-Obieogu K; Oke EO; Bright S
    Heliyon; 2022 Aug; 8(8):e10124. PubMed ID: 36033333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energetic and exergetic performance analysis and modeling of drying kinetics of kiwi slices.
    Darvishi H; Zarein M; Farhudi Z
    J Food Sci Technol; 2016 May; 53(5):2317-33. PubMed ID: 27407198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Data on exergy and exergy analyses of drying process of onion in a batch dryer.
    Folayan JA; Osuolale FN; Anawe PAL
    Data Brief; 2018 Dec; 21():1784-1793. PubMed ID: 30505917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of energy, exergy, environmental, and economic study of an evacuated tube solar dryer for drying Krishna Tulsi.
    Rao TSSB; Sivalingam M
    Environ Sci Pollut Res Int; 2023 May; 30(25):67351-67367. PubMed ID: 37103704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive exergoeconomic analysis of a municipal solid waste digestion plant equipped with a biogas genset.
    Aghbashlo M; Tabatabaei M; Soltanian S; Ghanavati H; Dadak A
    Waste Manag; 2019 Mar; 87():485-498. PubMed ID: 31109549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exergy-economic assessment of a hybrid power, cooling and heating generation system based on SOFC.
    Zahedi R; Forootan MM; Ahmadi R; Keshavarzzadeh M
    Heliyon; 2023 May; 9(5):e16164. PubMed ID: 37305502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Economic and environmental impact assessments of a newly designed energy system for marine applications.
    Seyam S; Dincer I; Agelin-Chaab M
    Chemosphere; 2023 Sep; 335():139041. PubMed ID: 37271466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exergy-Based Analysis and Optimization of an Integrated Solar Combined-Cycle Power Plant.
    Elmorsy L; Morosuk T; Tsatsaronis G
    Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental impact and thermodynamic comparative optimization of CO2-based multi-energy systems powered with geothermal energy.
    Bamisile O; Cai D; Adedeji M; Dagbasi M; Hu Y; Huang Q
    Sci Total Environ; 2024 Jan; 908():168459. PubMed ID: 37963538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy, Exergy, Exergoeconomic and Exergoenvironmental Impact Analyses and Optimization of Various Geothermal Power Cycle Configurations.
    Shamoushaki M; Aliehyaei M; Rosen MA
    Entropy (Basel); 2021 Nov; 23(11):. PubMed ID: 34828181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.