These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33286499)

  • 1. Convergence Behavior of DNNs with Mutual-Information-Based Regularization.
    Jónsson H; Cherubini G; Eleftheriou E
    Entropy (Basel); 2020 Jun; 22(7):. PubMed ID: 33286499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Examining the Causal Structures of Deep Neural Networks Using Information Theory.
    Marrow S; Michaud EJ; Hoel E
    Entropy (Basel); 2020 Dec; 22(12):. PubMed ID: 33353094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of Deep Convolutional Neural Networks Using Tensor Kernels and Matrix-Based Entropy.
    Wickstrøm KK; Løkse S; Kampffmeyer MC; Yu S; Príncipe JC; Jenssen R
    Entropy (Basel); 2023 Jun; 25(6):. PubMed ID: 37372243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissecting Deep Learning Networks-Visualizing Mutual Information.
    Fang H; Wang V; Yamaguchi M
    Entropy (Basel); 2018 Oct; 20(11):. PubMed ID: 33266547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilizing Information Bottleneck to Evaluate the Capability of Deep Neural Networks for Image Classification.
    Cheng H; Lian D; Gao S; Geng Y
    Entropy (Basel); 2019 May; 21(5):. PubMed ID: 33267170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Geometric Perspective on Information Plane Analysis.
    Basirat M; Geiger BC; Roth PM
    Entropy (Basel); 2021 Jun; 23(6):. PubMed ID: 34205211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Big in Japan: Regularizing Networks for Solving Inverse Problems.
    Schwab J; Antholzer S; Haltmeier M
    J Math Imaging Vis; 2020; 62(3):445-455. PubMed ID: 32308256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep convolutional neural network and IoT technology for healthcare.
    Wassan S; Dongyan H; Suhail B; Jhanjhi NZ; Xiao G; Ahmed S; Murugesan RK
    Digit Health; 2024; 10():20552076231220123. PubMed ID: 38250147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Information Flows of Diverse Autoencoders.
    Lee S; Jo J
    Entropy (Basel); 2021 Jul; 23(7):. PubMed ID: 34356403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aligned deep neural network for integrative analysis with high-dimensional input.
    Zhang S; Zhang S; Yi H; Ma S
    J Biomed Inform; 2023 Aug; 144():104434. PubMed ID: 37391115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fully Convolutional Deep Neural Networks with Optimized Hyperparameters for Detection of Shockable and Non-Shockable Rhythms.
    Krasteva V; Ménétré S; Didon JP; Jekova I
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32438582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Convolutional Neural Networks Outperform Feature-Based But Not Categorical Models in Explaining Object Similarity Judgments.
    Jozwik KM; Kriegeskorte N; Storrs KR; Mur M
    Front Psychol; 2017; 8():1726. PubMed ID: 29062291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transformed ℓ
    Ma R; Miao J; Niu L; Zhang P
    Neural Netw; 2019 Nov; 119():286-298. PubMed ID: 31499353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable tensor neural networks for efficient deep learning.
    Newman E; Horesh L; Avron H; Kilmer ME
    Front Big Data; 2024; 7():1363978. PubMed ID: 38873283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compressing Deep Networks by Neuron Agglomerative Clustering.
    Wang LN; Liu W; Liu X; Zhong G; Roy PP; Dong J; Huang K
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33114078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain tumor segmentation with Deep Neural Networks.
    Havaei M; Davy A; Warde-Farley D; Biard A; Courville A; Bengio Y; Pal C; Jodoin PM; Larochelle H
    Med Image Anal; 2017 Jan; 35():18-31. PubMed ID: 27310171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving robustness of a deep learning-based lung-nodule classification model of CT images with respect to image noise.
    Gao Y; Xiong J; Shen C; Jia X
    Phys Med Biol; 2021 Dec; 66(24):. PubMed ID: 34818638
    [No Abstract]   [Full Text] [Related]  

  • 18. Feature flow regularization: Improving structured sparsity in deep neural networks.
    Wu Y; Lan Y; Zhang L; Xiang Y
    Neural Netw; 2023 Apr; 161():598-613. PubMed ID: 36822145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density regression and uncertainty quantification with Bayesian deep noise neural networks.
    Zhang D; Liu T; Kang J
    Stat; 2023; 12(1):. PubMed ID: 38957733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Going Deeper, Generalizing Better: An Information-Theoretic View for Deep Learning.
    Zhang J; Liu T; Tao D
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; PP():. PubMed ID: 37585328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.