These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 33286633)

  • 1. Skyrmions and Spin Waves in Magneto-Ferroelectric Superlattices.
    Sharafullin IF; Diep HT
    Entropy (Basel); 2020 Aug; 22(8):. PubMed ID: 33286633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skyrmions at vanishingly small Dzyaloshinskii-Moriya interaction or zero magnetic field.
    Bera S; Mandal SS
    J Phys Condens Matter; 2021 May; 33(25):. PubMed ID: 33848984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical investigation of antiferromagnetic skyrmions in a triangular monolayer.
    Liu Z; Santos Dias MD; Lounis S
    J Phys Condens Matter; 2020 Jul; 32(42):. PubMed ID: 32460267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulating anti-skyrmions on a lattice.
    Criado JC; Schenk S; Spannowsky M; Hatton PD; Turnbull LA
    Sci Rep; 2022 Nov; 12(1):19179. PubMed ID: 36357466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The spin structures of interlayer coupled magnetic films with opposite chirality.
    Kang SP; Kim NJ; Kwon HY; Choi JW; Min BC; Won C
    Sci Rep; 2018 Feb; 8(1):2361. PubMed ID: 29402938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-space anisotropic dielectric response in a multiferroic skyrmion lattice.
    Chu P; Xie YL; Zhang Y; Chen JP; Chen DP; Yan ZB; Liu JM
    Sci Rep; 2015 Feb; 5():8318. PubMed ID: 25661786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ferroelectric Control of Magnetic Skyrmions in Two-Dimensional van der Waals Heterostructures.
    Huang K; Shao DF; Tsymbal EY
    Nano Lett; 2022 Apr; 22(8):3349-3355. PubMed ID: 35380845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electric-field control of skyrmions in multiferroic heterostructure via magnetoelectric coupling.
    Ba Y; Zhuang S; Zhang Y; Wang Y; Gao Y; Zhou H; Chen M; Sun W; Liu Q; Chai G; Ma J; Zhang Y; Tian H; Du H; Jiang W; Nan C; Hu JM; Zhao Y
    Nat Commun; 2021 Jan; 12(1):322. PubMed ID: 33436572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilizing spin spirals and isolated skyrmions at low magnetic field exploiting vanishing magnetic anisotropy.
    Hervé M; Dupé B; Lopes R; Böttcher M; Martins MD; Balashov T; Gerhard L; Sinova J; Wulfhekel W
    Nat Commun; 2018 Mar; 9(1):1015. PubMed ID: 29523833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous Magnetic Skyrmions in Single-Layer CrInX
    Du W; Dou K; He Z; Dai Y; Huang B; Ma Y
    Nano Lett; 2022 Apr; 22(8):3440-3446. PubMed ID: 35362978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large magnetoelectric coupling in magnetically short-range ordered Bi₅Ti₃FeO₁₅ film.
    Zhao H; Kimura H; Cheng Z; Osada M; Wang J; Wang X; Dou S; Liu Y; Yu J; Matsumoto T; Tohei T; Shibata N; Ikuhara Y
    Sci Rep; 2014 Jun; 4():5255. PubMed ID: 24918357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skyrmion driven by rotary magnetic field on the surface of magnetic nanotube: a Monte Carlo study.
    Chi X; Du A; Hu Y
    Nanotechnology; 2021 Apr; 32(27):. PubMed ID: 33780914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-space observation of a two-dimensional skyrmion crystal.
    Yu XZ; Onose Y; Kanazawa N; Park JH; Han JH; Matsui Y; Nagaosa N; Tokura Y
    Nature; 2010 Jun; 465(7300):901-4. PubMed ID: 20559382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zero-field magnetic skyrmions in exchange-biased ferromagnetic-antiferromagnetic bilayers.
    Pankratova M; Eriksson O; Bergman A
    J Phys Condens Matter; 2024 Jun; 36(38):. PubMed ID: 38848725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Creation and Annihilation of Skyrmions in the Frustrated Magnets with Competing Exchange Interactions.
    Hu Y; Chi X; Li X; Liu Y; Du A
    Sci Rep; 2017 Nov; 7(1):16079. PubMed ID: 29167506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Field-free deterministic ultrafast creation of magnetic skyrmions by spin-orbit torques.
    Büttner F; Lemesh I; Schneider M; Pfau B; Günther CM; Hessing P; Geilhufe J; Caretta L; Engel D; Krüger B; Viefhaus J; Eisebitt S; Beach GSD
    Nat Nanotechnol; 2017 Nov; 12(11):1040-1044. PubMed ID: 28967891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple-q states and the Skyrmion lattice of the triangular-lattice Heisenberg antiferromagnet under magnetic fields.
    Okubo T; Chung S; Kawamura H
    Phys Rev Lett; 2012 Jan; 108(1):017206. PubMed ID: 22304286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ferroelectric incommensurate spin crystals.
    Rusu D; Peters JJP; Hase TPA; Gott JA; Nisbet GAA; Strempfer J; Haskel D; Seddon SD; Beanland R; Sanchez AM; Alexe M
    Nature; 2022 Feb; 602(7896):240-244. PubMed ID: 35140385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiferroicity and skyrmions carrying electric polarization in GaV4S8.
    Ruff E; Widmann S; Lunkenheimer P; Tsurkan V; Bordács S; Kézsmárki I; Loidl A
    Sci Adv; 2015 Nov; 1(10):e1500916. PubMed ID: 26702441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization and Reversal of Skyrmion Lattice in Ta/CoFeB/MgO Multilayers.
    Qin Z; Wang Y; Zhu S; Jin C; Fu J; Liu Q; Cao J
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36556-36563. PubMed ID: 30277060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.