These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 33286653)
1. Optimization of a New Design of Molten Salt-to-CO Montes MJ; Linares JI; Barbero R; Moratilla BY Entropy (Basel); 2020 Aug; 22(8):. PubMed ID: 33286653 [TBL] [Abstract][Full Text] [Related]
2. How to Construct a Combined S-CO Sun E; Hu H; Li H; Liu C; Xu J Entropy (Basel); 2018 Dec; 21(1):. PubMed ID: 33266735 [TBL] [Abstract][Full Text] [Related]
3. Exergy optimization in a steady moving bed heat exchanger. Soria-Verdugo A; Almendros-Ibáñez JA; Ruiz-Rivas U; Santana D Ann N Y Acad Sci; 2009 Apr; 1161():584-600. PubMed ID: 19426351 [TBL] [Abstract][Full Text] [Related]
4. Cost of Using Laser Powder Bed Fusion to Fabricate a Molten Salt-to-Supercritial Carbon Dioxide Heat Exchanger for Concentrating Solar Power. Ziev T; Rasouli E; Tano IN; Wu Z; Rao Yarasi S; Lamprinakos N; Seo J; Narayanan V; Rollett AD; Vaishnav P 3D Print Addit Manuf; 2024 Jun; 11(3):e1108-e1118. PubMed ID: 39359594 [TBL] [Abstract][Full Text] [Related]
5. Exergy, exergoeconomic optimization and exergoenvironmental analysis of a hybrid solar, wind, and marine energy power system: A strategy for carbon-free electrical production. Zainul R; Basem A; J Alfaker M; Sharma P; Kumar A; Al-Bahrani M; Elawady A; Abbas M; Fooladi H; Pandey S Heliyon; 2024 Aug; 10(16):e35171. PubMed ID: 39253151 [TBL] [Abstract][Full Text] [Related]
6. A comparative energy and exergy optimization of a supercritical-CO Valencia Ochoa G; Duarte Forero J; Rojas JP Heliyon; 2020 Jun; 6(6):e04136. PubMed ID: 32548328 [TBL] [Abstract][Full Text] [Related]
7. Ceramic-metal composites for heat exchangers in concentrated solar power plants. Caccia M; Tabandeh-Khorshid M; Itskos G; Strayer AR; Caldwell AS; Pidaparti S; Singnisai S; Rohskopf AD; Schroeder AM; Jarrahbashi D; Kang T; Sahoo S; Kadasala NR; Marquez-Rossy A; Anderson MH; Lara-Curzio E; Ranjan D; Henry A; Sandhage KH Nature; 2018 Oct; 562(7727):406-409. PubMed ID: 30333580 [TBL] [Abstract][Full Text] [Related]
9. Novel Wide-Working-Temperature NaNO Wang H; Li J; Zhong Y; Liu X; Wang M Molecules; 2024 May; 29(10):. PubMed ID: 38792189 [TBL] [Abstract][Full Text] [Related]
10. A comparative study of the energy, exergetic and thermo-economic performance of a novelty combined Brayton S-CO Gutierrez JC; Ochoa GV; Duarte-Forero J Heliyon; 2020 Jul; 6(7):e04459. PubMed ID: 32695919 [TBL] [Abstract][Full Text] [Related]
11. Thermo-Fluid Characteristics of High Temperature Molten Salt Flowing in Single-Leaf Type Hollow Paddles. Rajeh T; Tu P; Lin H; Zhang H Entropy (Basel); 2018 Aug; 20(8):. PubMed ID: 33265670 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and Characterization of Molten Salt Nanofluids for Thermal Energy Storage Application in Concentrated Solar Power Plants-Mechanistic Understanding of Specific Heat Capacity Enhancement. Ma B; Shin D; Banerjee D Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33207602 [TBL] [Abstract][Full Text] [Related]
13. Numerical Analysis on Heat Transfer Characteristics of Supercritical CO Yan C; Xu J; Zhu B; Liu G Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32033437 [TBL] [Abstract][Full Text] [Related]
14. Parametric thermodynamic analysis and economic assessment of a novel solar heliostat-molten carbonate fuel cell system for electricity and fresh water production. Sadeghi S; Askari IB Environ Sci Pollut Res Int; 2022 Jan; 29(4):5469-5495. PubMed ID: 34420171 [TBL] [Abstract][Full Text] [Related]
15. Energy, exergy, emergy, and economic evaluation of a novel two-stage solar Rankine power plant. Hosseini R; Babaelahi M; Rafat E Environ Sci Pollut Res Int; 2022 Nov; 29(52):79140-79155. PubMed ID: 35705763 [TBL] [Abstract][Full Text] [Related]
16. Development and characterization of a quaternary nitrate based molten salt heat transfer fluid for concentrated solar power plant. Kwasi-Effah CC; Egware HO; Obanor AI; Ighodaro OO Heliyon; 2023 May; 9(5):e16096. PubMed ID: 37215795 [TBL] [Abstract][Full Text] [Related]
17. Recent Advances in Solar Thermal Electrochemical Process (STEP) for Carbon Neutral Products and High Value Nanocarbons. Ren J; Yu A; Peng P; Lefler M; Li FF; Licht S Acc Chem Res; 2019 Nov; 52(11):3177-3187. PubMed ID: 31697061 [TBL] [Abstract][Full Text] [Related]
18. Enhancing thermodynamic performance with an advanced combined power and refrigeration cycle with dual LNG cold energy utilization. Baigh TA; Saif MJ; Mustakim A; Nanzeeba F; Khan Y; Ehsan MM Heliyon; 2024 Aug; 10(15):e35748. PubMed ID: 39170498 [TBL] [Abstract][Full Text] [Related]
19. In situ production of titanium dioxide nanoparticles in molten salt phase for thermal energy storage and heat-transfer fluid applications. Lasfargues M; Bell A; Ding Y J Nanopart Res; 2016; 18():150. PubMed ID: 27358585 [TBL] [Abstract][Full Text] [Related]
20. Performance Investigation of High Temperature Application of Molten Solar Salt Nanofluid in a Direct Absorption Solar Collector. Karim MA; Arthur O; Yarlagadda PK; Islam M; Mahiuddin M Molecules; 2019 Jan; 24(2):. PubMed ID: 30646577 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]