These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 33286680)

  • 1. On the Use of Concentrated Time-Frequency Representations as Input to a Deep Convolutional Neural Network: Application to Non Intrusive Load Monitoring.
    Houidi S; Fourer D; Auger F
    Entropy (Basel); 2020 Aug; 22(9):. PubMed ID: 33286680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation.
    Eitel F; Soehler E; Bellmann-Strobl J; Brandt AU; Ruprecht K; Giess RM; Kuchling J; Asseyer S; Weygandt M; Haynes JD; Scheel M; Paul F; Ritter K
    Neuroimage Clin; 2019; 24():102003. PubMed ID: 31634822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CNN-LRP: Understanding Convolutional Neural Networks Performance for Target Recognition in SAR Images.
    Zang B; Ding L; Feng Z; Zhu M; Lei T; Xing M; Zhou X
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ELECTRIcity: An Efficient Transformer for Non-Intrusive Load Monitoring.
    Sykiotis S; Kaselimi M; Doulamis A; Doulamis N
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R
    J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic recognition of 3D GGO CT imaging signs through the fusion of hybrid resampling and layer-wise fine-tuning CNNs.
    Han G; Liu X; Zheng G; Wang M; Huang S
    Med Biol Eng Comput; 2018 Dec; 56(12):2201-2212. PubMed ID: 29873026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Deep residual convolutional neural network for recognition of electrocardiogram signal arrhythmias].
    Li D; Zhang H; Liu Z; Huang J; Wang T
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Apr; 36(2):189-198. PubMed ID: 31016934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Background Load Denoising across Complex Load Based on Generative Adversarial Network to Enhance Load Identification.
    Mukaroh A; Le TT; Kim H
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33027898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variational Regression for Multi-Target Energy Disaggregation.
    Virtsionis Gkalinikis N; Nalmpantis C; Vrakas D
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal indexing of medical entity in Chinese clinical notes.
    Liu Z; Wang X; Chen Q; Tang B; Xu H
    BMC Med Inform Decis Mak; 2019 Jan; 19(Suppl 1):17. PubMed ID: 30700331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. KinectGaitNet: Kinect-Based Gait Recognition Using Deep Convolutional Neural Network.
    Bari ASMH; Gavrilova ML
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multi-scale data fusion framework for bone age assessment with convolutional neural networks.
    Liu Y; Zhang C; Cheng J; Chen X; Wang ZJ
    Comput Biol Med; 2019 May; 108():161-173. PubMed ID: 31005008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning to Combine Local and Global Image Information for Contactless Palmprint Recognition.
    Stoimchev M; Ivanovska M; Štruc V
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benchmarking Audio Signal Representation Techniques for Classification with Convolutional Neural Networks.
    Sharan RV; Xiong H; Berkovsky S
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpretable and lightweight convolutional neural network for EEG decoding: Application to movement execution and imagination.
    Borra D; Fantozzi S; Magosso E
    Neural Netw; 2020 Sep; 129():55-74. PubMed ID: 32502798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting lung nodule malignancies by combining deep convolutional neural network and handcrafted features.
    Li S; Xu P; Li B; Chen L; Zhou Z; Hao H; Duan Y; Folkert M; Ma J; Huang S; Jiang S; Wang J
    Phys Med Biol; 2019 Sep; 64(17):175012. PubMed ID: 31307017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How Convolutional Neural Networks Diagnose Plant Disease.
    Toda Y; Okura F
    Plant Phenomics; 2019; 2019():9237136. PubMed ID: 33313540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voice Command Recognition Using Biologically Inspired Time-Frequency Representation and Convolutional Neural Networks.
    Sharan RV; Berkovsky S; Liu S
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():998-1001. PubMed ID: 33018153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A distance map regularized CNN for cardiac cine MR image segmentation.
    Dangi S; Linte CA; Yaniv Z
    Med Phys; 2019 Dec; 46(12):5637-5651. PubMed ID: 31598971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DeepFHR: intelligent prediction of fetal Acidemia using fetal heart rate signals based on convolutional neural network.
    Zhao Z; Deng Y; Zhang Y; Zhang Y; Zhang X; Shao L
    BMC Med Inform Decis Mak; 2019 Dec; 19(1):286. PubMed ID: 31888592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.