These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 33286703)
1. Comment on " Shneidman VA Entropy (Basel); 2020 Aug; 22(9):. PubMed ID: 33286703 [TBL] [Abstract][Full Text] [Related]
2. Heating rate effects in the transient nucleation problem. Shneidman VA J Chem Phys; 2007 Jul; 127(4):041102. PubMed ID: 17672674 [TBL] [Abstract][Full Text] [Related]
3. Crystallization of Supercooled Liquids: Self-Consistency Correction of the Steady-State Nucleation Rate. Abyzov AS; Schmelzer JWP; Fokin VM; Zanotto ED Entropy (Basel); 2020 May; 22(5):. PubMed ID: 33286330 [TBL] [Abstract][Full Text] [Related]
4. Comment on "Comparison between solutions of the general dynamic equation and the kinetic equation for nucleation and droplet growth" [J. Chem. Phys. 130, 014102 (2009)]. Shneidman VA J Chem Phys; 2010 Jan; 132(4):047101; author reply 047102. PubMed ID: 20113072 [TBL] [Abstract][Full Text] [Related]
5. Transient nucleation with a monotonically changing barrier. Shneidman VA Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031603. PubMed ID: 21230082 [TBL] [Abstract][Full Text] [Related]
7. Time-dependent distributions in self-quenching nucleation. Shneidman VA Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031602. PubMed ID: 22060380 [TBL] [Abstract][Full Text] [Related]
8. Molecular dynamics investigation of the transient regime in the freezing of salt clusters. Bushuev YG; Bartell LS J Phys Chem B; 2007 Feb; 111(7):1712-20. PubMed ID: 17263575 [TBL] [Abstract][Full Text] [Related]
9. Comment on "The nucleation behavior of supercooled water vapor in helium" [J. Chem. Phys. 117, 5647 (2002)]. Labetski DG; Holten V; Van Dongen ME J Chem Phys; 2004 Apr; 120(13):6314. PubMed ID: 15267520 [TBL] [Abstract][Full Text] [Related]
10. Temperature dependence of homogeneous nucleation rates for water: near equivalence of the empirical fit of Wölk and Strey, and the scaled nucleation model. Hale BN J Chem Phys; 2005 May; 122(20):204509. PubMed ID: 15945754 [TBL] [Abstract][Full Text] [Related]
11. Igniting homogeneous nucleation. Neu JC; Bonilla LL; Carpio A Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 1):021601. PubMed ID: 15783331 [TBL] [Abstract][Full Text] [Related]
16. Steady-state homogeneous nucleation and growth of water droplets: extended numerical treatment. Mokshin AV; Galimzyanov BN J Phys Chem B; 2012 Oct; 116(39):11959-67. PubMed ID: 22957738 [TBL] [Abstract][Full Text] [Related]
17. Effects of Glass Transition and Structural Relaxation on Crystal Nucleation: Theoretical Description and Model Analysis. Schmelzer JWP; Tropin TV; Fokin VM; Abyzov AS; Zanotto ED Entropy (Basel); 2020 Sep; 22(10):. PubMed ID: 33286867 [TBL] [Abstract][Full Text] [Related]
18. Complete thermodynamically consistent kinetic model of particle nucleation and growth: numerical study of the applicability of the classical theory of homogeneous nucleation. Chesnokov EN; Krasnoperov LN J Chem Phys; 2007 Apr; 126(14):144504. PubMed ID: 17444720 [TBL] [Abstract][Full Text] [Related]
19. Homogeneous ice nucleation from supercooled water. Li T; Donadio D; Russo G; Galli G Phys Chem Chem Phys; 2011 Nov; 13(44):19807-13. PubMed ID: 21989826 [TBL] [Abstract][Full Text] [Related]
20. A new procedure for analyzing the nucleation kinetics of freezing in computer simulation. Bartell LS; Wu DT J Chem Phys; 2006 Nov; 125(19):194503. PubMed ID: 17129119 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]