These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 33286844)

  • 1. Can Short and Partial Observations Reduce Model Error and Facilitate Machine Learning Prediction?
    Chen N
    Entropy (Basel); 2020 Sep; 22(10):. PubMed ID: 33286844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BAMCAFE: A Bayesian machine learning advanced forecast ensemble method for complex turbulent systems with partial observations.
    Chen N; Li Y
    Chaos; 2021 Nov; 31(11):113114. PubMed ID: 34881608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conditional Gaussian Systems for Multiscale Nonlinear Stochastic Systems: Prediction, State Estimation and Uncertainty Quantification.
    Chen N; Majda AJ
    Entropy (Basel); 2018 Jul; 20(7):. PubMed ID: 33265599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conditional Gaussian nonlinear system: A fast preconditioner and a cheap surrogate model for complex nonlinear systems.
    Chen N; Li Y; Liu H
    Chaos; 2022 May; 32(5):053122. PubMed ID: 35650001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting observed and hidden extreme events in complex nonlinear dynamical systems with partial observations and short training time series.
    Chen N; Majda AJ
    Chaos; 2020 Mar; 30(3):033101. PubMed ID: 32237755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient continuous data assimilation algorithm for the Sabra shell model of turbulence.
    Chen N; Li Y; Lunasin E
    Chaos; 2021 Oct; 31(10):103123. PubMed ID: 34717341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beating the curse of dimension with accurate statistics for the Fokker-Planck equation in complex turbulent systems.
    Chen N; Majda AJ
    Proc Natl Acad Sci U S A; 2017 Dec; 114(49):12864-12869. PubMed ID: 29158403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A random batch method for efficient ensemble forecasts of multiscale turbulent systems.
    Qi D; Liu JG
    Chaos; 2023 Feb; 33(2):023113. PubMed ID: 36859236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model Error, Information Barriers, State Estimation and Prediction in Complex Multiscale Systems.
    Majda AJ; Chen N
    Entropy (Basel); 2018 Aug; 20(9):. PubMed ID: 33265733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unambiguous Models and Machine Learning Strategies for Anomalous Extreme Events in Turbulent Dynamical System.
    Qi D
    Entropy (Basel); 2024 Jun; 26(6):. PubMed ID: 38920531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using data assimilation to train a hybrid forecast system that combines machine-learning and knowledge-based components.
    Wikner A; Pathak J; Hunt BR; Szunyogh I; Girvan M; Ott E
    Chaos; 2021 May; 31(5):053114. PubMed ID: 34240950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical time series prediction: Toward a hierarchical dynamical system framework.
    Liu Z; Hauskrecht M
    Artif Intell Med; 2015 Sep; 65(1):5-18. PubMed ID: 25534671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting daily emergency department visits using machine learning could increase accuracy.
    Gafni-Pappas G; Khan M
    Am J Emerg Med; 2023 Mar; 65():5-11. PubMed ID: 36574748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Ă…rsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant-scale biogas production prediction based on multiple hybrid machine learning technique.
    Zhang Y; Li L; Ren Z; Yu Y; Li Y; Pan J; Lu Y; Feng L; Zhang W; Han Y
    Bioresour Technol; 2022 Nov; 363():127899. PubMed ID: 36075348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linear theory for filtering nonlinear multiscale systems with model error.
    Berry T; Harlim J
    Proc Math Phys Eng Sci; 2014 Jul; 470(2167):20140168. PubMed ID: 25002829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep convolutional neural network and IoT technology for healthcare.
    Wassan S; Dongyan H; Suhail B; Jhanjhi NZ; Xiao G; Ahmed S; Murugesan RK
    Digit Health; 2024; 10():20552076231220123. PubMed ID: 38250147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining machine learning and data assimilation to forecast dynamical systems from noisy partial observations.
    Gottwald GA; Reich S
    Chaos; 2021 Oct; 31(10):101103. PubMed ID: 34717332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface similarity parameter: A new machine learning loss metric for oscillatory spatio-temporal data.
    Wedler M; Stender M; Klein M; Ehlers S; Hoffmann N
    Neural Netw; 2022 Dec; 156():123-134. PubMed ID: 36257069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gaussian processes meet NeuralODEs: a Bayesian framework for learning the dynamics of partially observed systems from scarce and noisy data.
    Bhouri MA; Perdikaris P
    Philos Trans A Math Phys Eng Sci; 2022 Aug; 380(2229):20210201. PubMed ID: 35719075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.