BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 33286885)

  • 1. Thermoelectric Efficiency of Silicon-Germanium Alloys in Finite-Time Thermodynamics.
    Rogolino P; Cimmelli VA
    Entropy (Basel); 2020 Oct; 22(10):. PubMed ID: 33286885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Approximation of Composition and Temperature Dependent Heat Conductivity and Optimization of Thermoelectric Energy Conversion in Silicon-Germanium Alloys.
    Cimmelli VA; Rogolino P
    Entropy (Basel); 2022 Oct; 24(10):. PubMed ID: 37420416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New and Recent Results for Thermoelectric Energy Conversion in Graded Alloys at Nanoscale.
    Cimmelli VA; Rogolino P
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First-Principles Study of Silicon-Tin Alloys as a High-Temperature Thermoelectric Material.
    Huang S; Ning S; Xiong R
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. What is the thermal conductivity limit of silicon germanium alloys?
    Lee Y; Pak AJ; Hwang GS
    Phys Chem Chem Phys; 2016 Jul; 18(29):19544-8. PubMed ID: 27398924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of Field Assisted Sintering of Silicon Germanium Alloys.
    Tukmakova A; Novotelnova A; Samusevich K; Usenko A; Moskovskikh D; Smirnov A; Mirofyanchenko E; Takagi T; Miki H; Khovaylo V
    Materials (Basel); 2019 Feb; 12(4):. PubMed ID: 30769820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large thermoelectric figure-of-merits from SiGe nanowires by simultaneously measuring electrical and thermal transport properties.
    Lee EK; Yin L; Lee Y; Lee JW; Lee SJ; Lee J; Cha SN; Whang D; Hwang GS; Hippalgaonkar K; Majumdar A; Yu C; Choi BL; Kim JM; Kim K
    Nano Lett; 2012 Jun; 12(6):2918-23. PubMed ID: 22548377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low thermal conductivity and improved thermoelectric performance of nanocrystalline silicon germanium films by sputtering.
    Taborda JA; Romero JJ; Abad B; Muñoz-Rojo M; Mello A; Briones F; Gonzalez MS
    Nanotechnology; 2016 Apr; 27(17):175401. PubMed ID: 26967792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal conductivity anisotropy in holey silicon nanostructures and its impact on thermoelectric cooling.
    Ren Z; Lee J
    Nanotechnology; 2018 Jan; 29(4):045404. PubMed ID: 29199973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental investigation of size effects on the thermal conductivity of silicon-germanium alloy thin films.
    Cheaito R; Duda JC; Beechem TE; Hattar K; Ihlefeld JF; Medlin DL; Rodriguez MA; Campion MJ; Piekos ES; Hopkins PE
    Phys Rev Lett; 2012 Nov; 109(19):195901. PubMed ID: 23215405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrahigh Average Thermoelectric Figure of Merit, Low Lattice Thermal Conductivity and Enhanced Microhardness in Nanostructured (GeTe)
    Samanta M; Roychowdhury S; Ghatak J; Perumal S; Biswas K
    Chemistry; 2017 Jun; 23(31):7438-7443. PubMed ID: 28436062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys.
    Joshi G; Lee H; Lan Y; Wang X; Zhu G; Wang D; Gould RW; Cuff DC; Tang MY; Dresselhaus MS; Chen G; Ren Z
    Nano Lett; 2008 Dec; 8(12):4670-4. PubMed ID: 19367858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maximum power and the corresponding efficiency for a Carnot-like thermoelectric cycle based on fluctuation theorem.
    Hua Y; Guo ZY
    Phys Rev E; 2024 Feb; 109(2-1):024130. PubMed ID: 38491639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased phonon scattering by nanograins and point defects in nanostructured silicon with a low concentration of germanium.
    Zhu GH; Lee H; Lan YC; Wang XW; Joshi G; Wang DZ; Yang J; Vashaee D; Guilbert H; Pillitteri A; Dresselhaus MS; Chen G; Ren ZF
    Phys Rev Lett; 2009 May; 102(19):196803. PubMed ID: 19518985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boundary Engineering for the Thermoelectric Performance of Bulk Alloys Based on Bismuth Telluride.
    Mun H; Choi SM; Lee KH; Kim SW
    ChemSusChem; 2015 Jul; 8(14):2312-26. PubMed ID: 25782971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal conductivity modeling of core-shell and tubular nanowires.
    Yang R; Chen G; Dresselhaus MS
    Nano Lett; 2005 Jun; 5(6):1111-5. PubMed ID: 15943452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal Transport in Silicon Nanowires at High Temperature up to 700 K.
    Lee J; Lee W; Lim J; Yu Y; Kong Q; Urban JJ; Yang P
    Nano Lett; 2016 Jul; 16(7):4133-40. PubMed ID: 27243378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystalline-Amorphous Silicon Nanocomposites with Reduced Thermal Conductivity for Bulk Thermoelectrics.
    Miura A; Zhou S; Nozaki T; Shiomi J
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13484-9. PubMed ID: 26046688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vertical Silicon Nanowire Thermoelectric Modules with Enhanced Thermoelectric Properties.
    Lee S; Kim K; Kang DH; Meyyappan M; Baek CK
    Nano Lett; 2019 Feb; 19(2):747-755. PubMed ID: 30636421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creating ligand-free silicon germanium alloy nanocrystal inks.
    Erogbogbo F; Liu T; Ramadurai N; Tuccarione P; Lai L; Swihart MT; Prasad PN
    ACS Nano; 2011 Oct; 5(10):7950-9. PubMed ID: 21928825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.