These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 33286885)

  • 21. Thermoelectric Bi
    Meroz O; Gelbstein Y
    Phys Chem Chem Phys; 2018 Feb; 20(6):4092-4099. PubMed ID: 29354831
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electron transport in SiGe alloy nanowires in the ballistic regime from first-principles.
    Amato M; Ossicini S; Rurali R
    Nano Lett; 2012 Jun; 12(6):2717-21. PubMed ID: 22545577
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of alloying on thermal conductivity and thermoelectric properties of CoAsS and CoSbS.
    Kaur P; Bera C
    Phys Chem Chem Phys; 2017 Sep; 19(36):24928-24933. PubMed ID: 28872649
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermal Conductivity Reduction in a Silicon Thin Film with Nanocones.
    Huang X; Gluchko S; Anufriev R; Volz S; Nomura M
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):34394-34398. PubMed ID: 31490655
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An analysis of the effects of temperature and structural arrangements on the thermal conductivity and thermal diffusivity of tropocollagen-hydroxyapatite interfaces.
    Qu T; Tomar V
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():28-38. PubMed ID: 24656349
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermal conductivity engineering of bulk and one-dimensional Si-Ge nanoarchitectures.
    Kandemir A; Ozden A; Cagin T; Sevik C
    Sci Technol Adv Mater; 2017; 18(1):187-196. PubMed ID: 28469733
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced in-plane thermoelectric figure of merit in p-type SiGe thin films by nanograin boundaries.
    Lu J; Guo R; Dai W; Huang B
    Nanoscale; 2015 Apr; 7(16):7331-9. PubMed ID: 25824614
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Decreasing the Effective Thermal Conductivity in Glass Supported Thermoelectric Layers.
    Bethke K; Andrei V; Rademann K
    PLoS One; 2016; 11(3):e0151708. PubMed ID: 26982458
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultra-low thermal conductivity and high thermoelectric performance of two-dimensional triphosphides (InP
    Sun Z; Yuan K; Chang Z; Bi S; Zhang X; Tang D
    Nanoscale; 2020 Feb; 12(5):3330-3342. PubMed ID: 31976500
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermal and Electronic Transport Properties of the Half-Heusler Phase ScNiSb.
    Synoradzki K; Ciesielski K; Veremchuk I; Borrmann H; Skokowski P; Szymański D; Grin Y; Kaczorowski D
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31137868
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Silicide/Silicon Hetero-Junction Structure for Thermoelectric Applications.
    Jun D; Kim S; Choi W; Kim J; Zyung T; Jang M
    J Nanosci Nanotechnol; 2015 Oct; 15(10):7472-5. PubMed ID: 26726353
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of disorder and anharmonicity in the thermal conductivity of silicon-germanium alloys: a first-principles study.
    Garg J; Bonini N; Kozinsky B; Marzari N
    Phys Rev Lett; 2011 Jan; 106(4):045901. PubMed ID: 21405336
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermoelectric transport in strained Si and Si/Ge heterostructures.
    Hinsche NF; Mertig I; Zahn P
    J Phys Condens Matter; 2012 Jul; 24(27):275501. PubMed ID: 22713229
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glassy thermal conductivity in the two-phase Cu(x)Ag(3-x)SbSeTe(2) alloy and high temperature thermoelectric behavior.
    Drymiotis F; Drye T; Rhodes D; Zhang Q; Lashey JC; Wang Y; Cawthorne S; Ma B; Lindsey S; Tritt T
    J Phys Condens Matter; 2010 Jan; 22(3):035801. PubMed ID: 21386296
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Achieving Minimal Heat Conductivity by Ballistic Confinement in Phononic Metalattices.
    Chen W; Talreja D; Eichfeld D; Mahale P; Nova NN; Cheng HY; Russell JL; Yu SY; Poilvert N; Mahan G; Mohney SE; Crespi VH; Mallouk TE; Badding JV; Foley B; Gopalan V; Dabo I
    ACS Nano; 2020 Apr; 14(4):4235-4243. PubMed ID: 32223186
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of Pd Doping on Electrical and Thermal Properties of
    Kim SY; Kim HS; Lee KH; Cho HJ; Choo SS; Hong SW; Oh Y; Yang Y; Lee K; Lim JH; Choi SM; Park HJ; Shin WH; Kim SI
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31817704
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interpreting the Combustion Process for High-Performance ZrNiSn Thermoelectric Materials.
    Hu T; Yang D; Su X; Yan Y; You Y; Liu W; Uher C; Tang X
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):864-872. PubMed ID: 29236464
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent progress in oxide thermoelectric materials: p-type Ca3Co4O9 and n-type SrTiO3(-).
    Ohta H; Sugiura K; Koumoto K
    Inorg Chem; 2008 Oct; 47(19):8429-36. PubMed ID: 18821809
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulation of thermal conductivity in kinked silicon nanowires: phonon interchanging and pinching effects.
    Jiang JW; Yang N; Wang BS; Rabczuk T
    Nano Lett; 2013 Apr; 13(4):1670-4. PubMed ID: 23517486
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Concerted Rattling in CsAg5 Te3 Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance.
    Lin H; Tan G; Shen JN; Hao S; Wu LM; Calta N; Malliakas C; Wang S; Uher C; Wolverton C; Kanatzidis MG
    Angew Chem Int Ed Engl; 2016 Sep; 55(38):11431-6. PubMed ID: 27513458
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.