These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 33286934)
41. The use of a hybrid photovoltaic/thermal (PV/T) collector system as a sustainable energy-harvest instrument in urban technology. Prasetyo SD; Prabowo AR; Arifin Z Heliyon; 2023 Feb; 9(2):e13390. PubMed ID: 36820025 [TBL] [Abstract][Full Text] [Related]
42. CFD modeling and performance evaluation of an open-aperture partially evacuated receiver with internal twisted inserts in solar PTCs: energy and exergy analysis. Madadi Avargani V; Zendehboudi S Environ Sci Pollut Res Int; 2023 Mar; 30(15):43346-43368. PubMed ID: 36653690 [TBL] [Abstract][Full Text] [Related]
43. Design configuration and operational parameters of bi-fluid PVT collectors: an updated review. Al-Waeli AHA; Sopian K; Kazem HA; Chaichan MT Environ Sci Pollut Res Int; 2023 Jul; 30(34):81474-81492. PubMed ID: 36689112 [TBL] [Abstract][Full Text] [Related]
44. Experimental thermal performance and enviroeconomic analysis of serpentine flow channeled flat plate solar water collector. Vengadesan E; Senthil R Environ Sci Pollut Res Int; 2022 Mar; 29(12):17241-17259. PubMed ID: 34661837 [TBL] [Abstract][Full Text] [Related]
45. Challenges, limitations, and applications of nanofluids in solar thermal collectors-a comprehensive review. Omeiza LA; Abid M; Subramanian Y; Dhanasekaran A; Bakar SA; Azad AK Environ Sci Pollut Res Int; 2023 Nov; ():. PubMed ID: 38019406 [TBL] [Abstract][Full Text] [Related]
46. Experimental study of the thermal performance of heat storage-integrated solar receiver for parabolic dish collectors. Vishnu SK; Senthil R Environ Sci Pollut Res Int; 2023 Jun; 30(30):76044-76059. PubMed ID: 37233932 [TBL] [Abstract][Full Text] [Related]
47. Performance enhancement of a solar still using a V-groove solar air collector-experimental study with energy, exergy, enviroeconomic, and exergoeconomic analysis. Azari P; Mirabdolah Lavasani A; Rahbar N; Eftekhari Yazdi M Environ Sci Pollut Res Int; 2021 Dec; 28(46):65525-65548. PubMed ID: 34319518 [TBL] [Abstract][Full Text] [Related]
48. Design of an injera baking system using parabolic trough solar collectors at Mekelle University cafeteria. Retta HT; Hailu MH; Baheta AT; Haile MG Heliyon; 2024 Sep; 10(17):e36864. PubMed ID: 39296004 [TBL] [Abstract][Full Text] [Related]
49. Energy, exergy, and environmental assessment of a small-scale solar organic Rankine cycle using different organic fluids. Polanco Piñerez G; Valencia Ochoa G; Duarte-Forero J Heliyon; 2021 Sep; 7(9):e07947. PubMed ID: 34553085 [TBL] [Abstract][Full Text] [Related]
50. An experimental study on a cylindrical-conical cavity receiver for the parabolic dish collector. Esfanjani P; Mahmoudi A; Valipour MS; Rashidi S Environ Sci Pollut Res Int; 2023 Jan; 30(3):6517-6529. PubMed ID: 35997878 [TBL] [Abstract][Full Text] [Related]
51. Exergy and Exergoeconomic Analysis of a Cogeneration Hybrid Solar Organic Rankine Cycle with Ejector. Tashtoush B; Morosuk T; Chudasama J Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286476 [TBL] [Abstract][Full Text] [Related]
52. Performance investigation of solar energy-aided compression-based building air conditioning strategies for variable climatic regions. Singh G; Das R Environ Sci Pollut Res Int; 2024 Mar; 31(12):18672-18682. PubMed ID: 38349494 [TBL] [Abstract][Full Text] [Related]
53. Thermo- economic feasibility of solar-assisted regeneration in post-combustion carbon capture: A diglycolamine-based case. Hosseinifard F; Hosseinpour M; Salimi M; Amidpour M Heliyon; 2024 Aug; 10(15):e35316. PubMed ID: 39166011 [TBL] [Abstract][Full Text] [Related]
54. Heat Transfer Enhancement in Parabolic through Solar Receiver: A Three-Dimensional Numerical Investigation. Fahim T; Laouedj S; Abderrahmane A; Alotaibi S; Younis O; Ali HM Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159764 [TBL] [Abstract][Full Text] [Related]
55. The effect of psychrometry on the performance of a solar collector. Dhaundiyal A; Gebremicheal GH Environ Sci Pollut Res Int; 2022 Feb; 29(9):13445-13458. PubMed ID: 34595710 [TBL] [Abstract][Full Text] [Related]
56. Assessment of thermohydraulic performance and entropy generation in an evacuated tube solar collector employing pure water and nanofluids as working fluids. López-Núñez OA; Lara F; González-Angeles A; Cardenas-Robles A; Ramírez-Minguela JJ; Alfaro-Ayala JA Heliyon; 2024 Apr; 10(8):e29309. PubMed ID: 38628761 [TBL] [Abstract][Full Text] [Related]
57. Energy, exergy, environmental, and economic analysis of natural and forced cooling of solar still with porous media. Hassan H; Yousef MS; Ahmed MS; Fathy M Environ Sci Pollut Res Int; 2020 Oct; 27(30):38221-38240. PubMed ID: 32621198 [TBL] [Abstract][Full Text] [Related]
58. Comparative assessment of direct absorption solar collector performance in different climates. Heyhat MM; Abbood MQJ; Ahbabi Saray J; Mokhtari Ardekani A Sci Rep; 2023 Dec; 13(1):21359. PubMed ID: 38049476 [TBL] [Abstract][Full Text] [Related]
59. Thermo-economic comparison of single basin and stacked solar still configurations. Murugan DK; Subramani S; Thirugnanasambantham A; Munuswamy K Environ Sci Pollut Res Int; 2022 Oct; 29(47):71650-71664. PubMed ID: 35599291 [TBL] [Abstract][Full Text] [Related]
60. Design of a Parabolic Trough Collector Solar Field for a Pilot CO Bravo J; Romero C; Baltrusaitis J ACS Omega; 2023 Nov; 8(47):44920-44930. PubMed ID: 38046348 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]