These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 33287043)
1. Distinguishability and Disturbance in the Quantum Key Distribution Protocol Using the Mean Multi-Kings' Problem. Yoshida M; Nakayama A; Cheng J Entropy (Basel); 2020 Nov; 22(11):. PubMed ID: 33287043 [TBL] [Abstract][Full Text] [Related]
2. Practical quantum key distribution protocol without monitoring signal disturbance. Sasaki T; Yamamoto Y; Koashi M Nature; 2014 May; 509(7501):475-8. PubMed ID: 24848060 [TBL] [Abstract][Full Text] [Related]
3. Analysis of quantum key distribution based on unified model of sequential state discrimination strategy. Namkung M; Kwon Y Sci Rep; 2024 May; 14(1):10254. PubMed ID: 38704406 [TBL] [Abstract][Full Text] [Related]
4. Quantum-locked key distribution at nearly the classical capacity rate. Lupo C; Lloyd S Phys Rev Lett; 2014 Oct; 113(16):160502. PubMed ID: 25361242 [TBL] [Abstract][Full Text] [Related]
5. Quantum man-in-the-middle attack on the calibration process of quantum key distribution. Fei YY; Meng XD; Gao M; Wang H; Ma Z Sci Rep; 2018 Mar; 8(1):4283. PubMed ID: 29523828 [TBL] [Abstract][Full Text] [Related]
6. Entangled state quantum cryptography: eavesdropping on the ekert protocol. Naik DS; Peterson CG; White AG; Berglund AJ; Kwiat PG Phys Rev Lett; 2000 May; 84(20):4733-6. PubMed ID: 10990783 [TBL] [Abstract][Full Text] [Related]
7. Improving the Performance of Quantum Cryptography by Using the Encryption of the Error Correction Data. Pastushenko VA; Kronberg DA Entropy (Basel); 2023 Jun; 25(6):. PubMed ID: 37372300 [TBL] [Abstract][Full Text] [Related]
9. How Secure Are Two-Way Ping-Pong and LM05 QKD Protocols under a Man-in-the-Middle Attack? Pavičić M Entropy (Basel); 2021 Jan; 23(2):. PubMed ID: 33573044 [TBL] [Abstract][Full Text] [Related]
10. Disturbance-Disturbance uncertainty relation: The statistical distinguishability of quantum states determines disturbance. Benítez Rodríguez E; Arévalo Aguilar LM Sci Rep; 2018 Mar; 8(1):4010. PubMed ID: 29507359 [TBL] [Abstract][Full Text] [Related]
16. Free-space optical wiretap channel and experimental secret key agreement in 7.8 km terrestrial link. Fujiwara M; Ito T; Kitamura M; Endo H; Tsuzuki O; Toyoshima M; Takenaka H; Takayama Y; Shimizu R; Takeoka M; Matsumoto R; Sasaki M Opt Express; 2018 Jul; 26(15):19513-19523. PubMed ID: 30114122 [TBL] [Abstract][Full Text] [Related]
17. Round-robin-differential-phase-shift quantum key distribution with monitoring signal disturbance. Wang R; Yin ZQ; Wang S; Chen W; Guo GC; Han ZF Opt Lett; 2018 Sep; 43(17):4228-4231. PubMed ID: 30160758 [TBL] [Abstract][Full Text] [Related]
18. Improved security bound for the round-robin-differential-phase-shift quantum key distribution. Yin ZQ; Wang S; Chen W; Han YG; Wang R; Guo GC; Han ZF Nat Commun; 2018 Jan; 9(1):457. PubMed ID: 29386505 [TBL] [Abstract][Full Text] [Related]
19. One Step Quantum Key Distribution Based on EPR Entanglement. Li J; Li N; Li LL; Wang T Sci Rep; 2016 Jun; 6():28767. PubMed ID: 27357865 [TBL] [Abstract][Full Text] [Related]
20. Enhanced secret-key generation from atmospheric optical channels with the use of random modulation. Chen C; Li Q Opt Express; 2022 Dec; 30(25):45862-45882. PubMed ID: 36522981 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]