These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 33287088)

  • 1. Optimization, Stability, and Entropy in Endoreversible Heat Engines.
    Gonzalez-Ayala J; Mateos Roco JM; Medina A; Calvo Hernández A
    Entropy (Basel); 2020 Nov; 22(11):. PubMed ID: 33287088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization and Stability of Heat Engines: The Role of Entropy Evolution.
    Gonzalez-Ayala J; Santillán M; Santos MJ; Calvo Hernández A; Mateos Roco JM
    Entropy (Basel); 2018 Nov; 20(11):. PubMed ID: 33266589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The equivalence of minimum entropy production and maximum thermal efficiency in endoreversible heat engines.
    Haseli Y
    Heliyon; 2016 May; 2(5):e00113. PubMed ID: 27441284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energetic Self-Optimization Induced by Stability in Low-Dissipation Heat Engines.
    Gonzalez-Ayala J; Guo J; Medina A; Roco JMM; Hernández AC
    Phys Rev Lett; 2020 Feb; 124(5):050603. PubMed ID: 32083912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization induced by stability and the role of limited control near a steady state.
    Gonzalez-Ayala J; Guo J; Medina A; Roco JMM; Calvo Hernández A
    Phys Rev E; 2019 Dec; 100(6-1):062128. PubMed ID: 31962470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite-power performance of quantum heat engines in linear response.
    Liu Q; He J; Ma Y; Wang J
    Phys Rev E; 2019 Jul; 100(1-1):012105. PubMed ID: 31499858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic optimization subsumed in stability phenomena.
    Gonzalez-Ayala J; Medina A; Roco JMM; Calvo Hernández A
    Sci Rep; 2020 Aug; 10(1):14305. PubMed ID: 32868825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficiency at maximum power output of linear irreversible Carnot-like heat engines.
    Wang Y; Tu ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011127. PubMed ID: 22400532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endoreversible quantum heat engines in the linear response regime.
    Wang H; He J; Wang J
    Phys Rev E; 2017 Jul; 96(1-1):012152. PubMed ID: 29347192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Irreversible entropy production in low- and high-dissipation heat engines and the problem of the Curzon-Ahlborn efficiency.
    Gerstenmaier YC
    Phys Rev E; 2021 Mar; 103(3-1):032141. PubMed ID: 33862798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecological efficiency of finite-time thermodynamics: A molecular dynamics study.
    Rojas-Gamboa DA; Rodríguez JI; Gonzalez-Ayala J; Angulo-Brown F
    Phys Rev E; 2018 Aug; 98(2-1):022130. PubMed ID: 30253568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal Heat Exchanger Area Distribution and Low-Temperature Heat Sink Temperature for Power Optimization of an Endoreversible Space Carnot Cycle.
    Wang T; Ge Y; Chen L; Feng H; Yu J
    Entropy (Basel); 2021 Sep; 23(10):. PubMed ID: 34682008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic robustness of endoreversible Carnot refrigerator working in the maximum performance per cycle time.
    Lü K; Nie W; He J
    Sci Rep; 2018 Aug; 8(1):12638. PubMed ID: 30139973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance Features of a Stationary Stochastic Novikov Engine.
    Schwalbe K; Hoffmann KH
    Entropy (Basel); 2018 Jan; 20(1):. PubMed ID: 33265139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entropy generation and unified optimization of Carnot-like and low-dissipation refrigerators.
    Gonzalez-Ayala J; Medina A; Roco JMM; Hernández AC
    Phys Rev E; 2018 Feb; 97(2-1):022139. PubMed ID: 29548120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maximum efficiency of ideal heat engines based on a small system: correction to the Carnot efficiency at the nanoscale.
    Quan HT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062134. PubMed ID: 25019751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal low symmetric dissipation Carnot engines and refrigerators.
    de Tomás C; Hernández AC; Roco JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):010104. PubMed ID: 22400500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Action and Entropy in Heat Engines: An Action Revision of the Carnot Cycle.
    Kennedy IR; Hodzic M
    Entropy (Basel); 2021 Jul; 23(7):. PubMed ID: 34356401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal Power and Efficiency of Multi-Stage Endoreversible Quantum Carnot Heat Engine with Harmonic Oscillators at the Classical Limit.
    Meng Z; Chen L; Wu F
    Entropy (Basel); 2020 Apr; 22(4):. PubMed ID: 33286231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance Analysis and Optimization for Irreversible Combined Carnot Heat Engine Working with Ideal Quantum Gases.
    Chen L; Meng Z; Ge Y; Wu F
    Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33925622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.