These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 33287088)

  • 21. Applicability of the low-dissipation model: Carnot-like heat engines under Newton's law of cooling.
    Zhang Y; Huang Y
    Phys Rev E; 2020 Jul; 102(1-1):012151. PubMed ID: 32794970
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Local-stability analysis of a low-dissipation heat engine working at maximum power output.
    Reyes-Ramírez I; Gonzalez-Ayala J; Calvo Hernández A; Santillán M
    Phys Rev E; 2017 Oct; 96(4-1):042128. PubMed ID: 29347531
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A quantum heat engine driven by atomic collisions.
    Bouton Q; Nettersheim J; Burgardt S; Adam D; Lutz E; Widera A
    Nat Commun; 2021 Apr; 12(1):2063. PubMed ID: 33824327
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiobjective Optimization of a Plate Heat Exchanger in a Waste Heat Recovery Organic Rankine Cycle System for Natural Gas Engines.
    Valencia G; Núñez J; Duarte J
    Entropy (Basel); 2019 Jul; 21(7):. PubMed ID: 33267369
    [TBL] [Abstract][Full Text] [Related]  

  • 25. From maximum power to a trade-off optimization of low-dissipation heat engines: Influence of control parameters and the role of entropy generation.
    Gonzalez-Ayala J; Calvo Hernández A; Roco JM
    Phys Rev E; 2017 Feb; 95(2-1):022131. PubMed ID: 28297927
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Energetics of a simple microscopic heat engine.
    Asfaw M; Bekele M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056109. PubMed ID: 16383690
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unified trade-off optimization for general heat devices with nonisothermal processes.
    Long R; Liu W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042127. PubMed ID: 25974458
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficiency of Harmonic Quantum Otto Engines at Maximal Power.
    Deffner S
    Entropy (Basel); 2018 Nov; 20(11):. PubMed ID: 33266599
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-level laser heat engine at optimal performance with ecological function.
    Singh V; Johal RS
    Phys Rev E; 2019 Jul; 100(1-1):012138. PubMed ID: 31499856
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heat engines at optimal power: Low-dissipation versus endoreversible model.
    Johal RS
    Phys Rev E; 2017 Jul; 96(1-1):012151. PubMed ID: 29347099
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimal performance of endoreversible quantum refrigerators.
    Correa LA; Palao JP; Adesso G; Alonso D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062124. PubMed ID: 25615061
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Performance enhancement of quantum Brayton engine via Bose-Einstein condensation.
    Ruan H; Yuan J; Xu Y; He J; Ma Y; Wang J
    Phys Rev E; 2024 Feb; 109(2-1):024126. PubMed ID: 38491606
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Maximum efficiency of low-dissipation heat pumps at given heating load.
    Ye Z; Holubec V
    Phys Rev E; 2022 Feb; 105(2-1):024139. PubMed ID: 35291093
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimization Modeling of Irreversible Carnot Engine from the Perspective of Combining Finite Speed and Finite Time Analysis.
    Costea M; Petrescu S; Feidt M; Dobre C; Borcila B
    Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33922290
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Success versus failure: Efficient heat devices in thermodynamics.
    González-Ayala J; Calvo Hernández A; White JA; Medina A; Roco JMM; Velasco S
    Phys Rev E; 2022 Jan; 105(1-1):014115. PubMed ID: 35193266
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermodynamic Optimization for an Endoreversible Dual-Miller Cycle (DMC) with Finite Speed of Piston.
    Wu Z; Chen L; Feng H
    Entropy (Basel); 2018 Mar; 20(3):. PubMed ID: 33265256
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Four-Objective Optimization of an Irreversible Stirling Heat Engine with Linear Phenomenological Heat-Transfer Law.
    Xu H; Chen L; Ge Y; Feng H
    Entropy (Basel); 2022 Oct; 24(10):. PubMed ID: 37420511
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermo-Economic Optimization of an Idealized Solar Tower Power Plant Combined with MED System.
    Zheng Y; Zhao Y; Liang S; Zheng H
    Entropy (Basel); 2018 Oct; 20(11):. PubMed ID: 33266546
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficiency at maximum power and efficiency fluctuations in a linear Brownian heat-engine model.
    Park JM; Chun HM; Noh JD
    Phys Rev E; 2016 Jul; 94(1-1):012127. PubMed ID: 27575096
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cyclic heat engines with nonisentropic adiabats and generalization to steady-state devices including thermoelectric converters.
    Gerstenmaier YC
    Phys Rev E; 2022 Jun; 105(6-1):064136. PubMed ID: 35854556
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.