BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 33287112)

  • 21. Physical Activity Recognition Based on a Parallel Approach for an Ensemble of Machine Learning and Deep Learning Classifiers.
    Abid M; Khabou A; Ouakrim Y; Watel H; Chemcki S; Mitiche A; Benazza-Benyahia A; Mezghani N
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300453
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detecting compensatory movements of stroke survivors using pressure distribution data and machine learning algorithms.
    Cai S; Li G; Zhang X; Huang S; Zheng H; Ma K; Xie L
    J Neuroeng Rehabil; 2019 Nov; 16(1):131. PubMed ID: 31684970
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Classifier Personalization for Activity Recognition Using Wrist Accelerometers.
    Mannini A; Intille SS
    IEEE J Biomed Health Inform; 2019 Jul; 23(4):1585-1594. PubMed ID: 30222588
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Validation of Inertial Sensing-Based Wearable Device for Tremor and Bradykinesia Quantification.
    Dai H; Cai G; Lin Z; Wang Z; Ye Q
    IEEE J Biomed Health Inform; 2021 Apr; 25(4):997-1005. PubMed ID: 32750961
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Magnetocardiography-Based Ischemic Heart Disease Detection and Localization Using Machine Learning Methods.
    Rong Tao ; Shulin Zhang ; Xiao Huang ; Minfang Tao ; Jian Ma ; Shixin Ma ; Chaoxiang Zhang ; Tongxin Zhang ; Fakuan Tang ; Jianping Lu ; Chenxing Shen ; Xiaoming Xie
    IEEE Trans Biomed Eng; 2019 Jun; 66(6):1658-1667. PubMed ID: 30369432
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Data-Driven Approach to Physical Fatigue Management Using Wearable Sensors to Classify Four Diagnostic Fatigue States.
    Pinto-Bernal MJ; Cifuentes CA; Perdomo O; Rincón-Roncancio M; Múnera M
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640722
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Parametric evaluation of deep brain stimulation parameter configurations for Parkinson's disease using a conformal wearable and wireless inertial sensor system and machine learning.
    LeMoyne R; Mastroianni T; Whiting D; Tomycz N
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3606-3611. PubMed ID: 33018783
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Smart-Sleeve: A Wearable Textile Pressure Sensor Array for Human Activity Recognition.
    Xu G; Wan Q; Deng W; Guo T; Cheng J
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270849
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Towards an Efficient One-Class Classifier for Mobile Devices and Wearable Sensors on the Context of Personal Risk Detection.
    Trejo LA; Barrera-Animas AY
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30200188
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Multi-Window Majority Voting Strategy to Improve Hand Gesture Recognition Accuracies Using Electromyography Signal.
    Wahid MF; Tafreshi R; Langari R
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):427-436. PubMed ID: 31870989
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Respiratory Sound Based Classification of Chronic Obstructive Pulmonary Disease: a Risk Stratification Approach in Machine Learning Paradigm.
    Haider NS; Singh BK; Periyasamy R; Behera AK
    J Med Syst; 2019 Jun; 43(8):255. PubMed ID: 31254141
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A wearable hand gesture recognition device based on acoustic measurements at wrist.
    Siddiqui N; Chan RHM
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4443-4446. PubMed ID: 29060883
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Machine Learning Predicts the Fall Risk of Total Hip Arthroplasty Patients Based on Wearable Sensor Instrumented Performance Tests.
    Polus JS; Bloomfield RA; Vasarhelyi EM; Lanting BA; Teeter MG
    J Arthroplasty; 2021 Feb; 36(2):573-578. PubMed ID: 32928593
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of Machine Learning Classifiers and Sensor Data to Detect Neurological Deficit in Stroke Patients.
    Park E; Chang HJ; Nam HS
    J Med Internet Res; 2017 Apr; 19(4):e120. PubMed ID: 28420599
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Machine learning algorithms for activity recognition in ambulant children and adolescents with cerebral palsy.
    Ahmadi M; O'Neil M; Fragala-Pinkham M; Lennon N; Trost S
    J Neuroeng Rehabil; 2018 Nov; 15(1):105. PubMed ID: 30442154
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fatigue Evaluation through Machine Learning and a Global Fatigue Descriptor.
    Ramos G; Vaz JR; Mendonça GV; Pezarat-Correia P; Rodrigues J; Alfaras M; Gamboa H
    J Healthc Eng; 2020; 2020():6484129. PubMed ID: 31998469
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Depression Prediction by Using Ecological Momentary Assessment, Actiwatch Data, and Machine Learning: Observational Study on Older Adults Living Alone.
    Kim H; Lee S; Lee S; Hong S; Kang H; Kim N
    JMIR Mhealth Uhealth; 2019 Oct; 7(10):e14149. PubMed ID: 31621642
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automatic Multi-Level In-Exhale Segmentation and Enhanced Generalized S-Transform for wheezing detection.
    Chen H; Yuan X; Li J; Pei Z; Zheng X
    Comput Methods Programs Biomed; 2019 Sep; 178():163-173. PubMed ID: 31416545
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Epileptic seizure detection: a comparative study between deep and traditional machine learning techniques.
    Sahu R; Dash SR; Cacha LA; Poznanski RR; Parida S
    J Integr Neurosci; 2020 Mar; 19(1):1-9. PubMed ID: 32259881
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Objective and automatic classification of Parkinson disease with Leap Motion controller.
    Butt AH; Rovini E; Dolciotti C; De Petris G; Bongioanni P; Carboncini MC; Cavallo F
    Biomed Eng Online; 2018 Nov; 17(1):168. PubMed ID: 30419916
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.