These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 33287138)

  • 41. Random semiconductor lasers: scattered versus Fabry-Perot feedback.
    Kalusniak S; Wünsche HJ; Henneberger F
    Phys Rev Lett; 2011 Jan; 106(1):013901. PubMed ID: 21231740
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires.
    Yang Z; Wang D; Meng C; Wu Z; Wang Y; Ma Y; Dai L; Liu X; Hasan T; Liu X; Yang Q
    Nano Lett; 2014 Jun; 14(6):3153-9. PubMed ID: 24798020
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Standing wave plasmon modes interact in an antenna-coupled nanowire.
    Day JK; Large N; Nordlander P; Halas NJ
    Nano Lett; 2015 Feb; 15(2):1324-30. PubMed ID: 25565116
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Design and Room-Temperature Operation of GaAs/AlGaAs Multiple Quantum Well Nanowire Lasers.
    Saxena D; Jiang N; Yuan X; Mokkapati S; Guo Y; Tan HH; Jagadish C
    Nano Lett; 2016 Aug; 16(8):5080-6. PubMed ID: 27459233
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Low-threshold single-mode nanowire array flat-band photonic-crystal surface-emitting lasers with high-reflectivity bottom mirrors.
    Wu C; Yan X; Li Y; Li Y; Zhang J; Yuan X; Zhang Y; Zhang X
    Opt Express; 2024 Jan; 32(1):652-661. PubMed ID: 38175089
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Scattering by abrupt discontinuities on photonic nanowires: closed-form expressions for domain reduction.
    Li G; Xiong Q
    Opt Express; 2014 Oct; 22(21):25137-48. PubMed ID: 25401546
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ultrathin Colloidal Quantum Dot Films for Optical Amplification: The Role of Modal Confinement and Heat Dissipation.
    Koh WK; Lee J; Cho KS; Roh YG
    Chemphyschem; 2017 Nov; 18(21):2981-2984. PubMed ID: 28861946
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reduction of lasing threshold by protecting gas and the structure dependent visual lasing mode of various CdS microstructures.
    Li Y; Guo S; Zhao F; Li A; Chai K; Liang L; Liu R
    Opt Express; 2016 Nov; 24(23):26857-26866. PubMed ID: 27857414
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ultrafast plasmonic lasing from a metal/semiconductor interface.
    Wang J; Jia X; Wang Z; Liu W; Zhu X; Huang Z; Yu H; Yang Q; Sun Y; Wang Z; Qu S; Lin J; Jin P; Wang Z
    Nanoscale; 2020 Aug; 12(31):16403-16408. PubMed ID: 32525164
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Plasmon Waveguiding in Nanowires.
    Wei H; Pan D; Zhang S; Li Z; Li Q; Liu N; Wang W; Xu H
    Chem Rev; 2018 Mar; 118(6):2882-2926. PubMed ID: 29446301
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Few-Minute Synthesis of CsPbBr
    Pushkarev AP; Korolev VI; Markina DI; Komissarenko FE; Naujokaitis A; Drabavičius A; Pakštas V; Franckevičius M; Khubezhov SA; Sannikov DA; Zasedatelev AV; Lagoudakis PG; Zakhidov AA; Makarov SV
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):1040-1048. PubMed ID: 30540432
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Single-Mode Semiconductor Nanowire Lasers With Coupled Cavities.
    Ullah S; Pian S; Dai F; Wang Y; Ma Y; Yang Q
    Front Chem; 2020; 8():631870. PubMed ID: 33520944
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Endface reflectivities of optical nanowires.
    Wang S; Hu Z; Yu H; Fang W; Qiu M; Tong L
    Opt Express; 2009 Jun; 17(13):10881-6. PubMed ID: 19550488
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrically pumped waveguide lasing from ZnO nanowires.
    Chu S; Wang G; Zhou W; Lin Y; Chernyak L; Zhao J; Kong J; Li L; Ren J; Liu J
    Nat Nanotechnol; 2011 Jul; 6(8):506-10. PubMed ID: 21725304
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Antiboding and bonding lasing modes with low gain threshold in nonlocal metallic nanoshell.
    Huang Y; Xiao JJ; Gao L
    Opt Express; 2015 Apr; 23(7):8818-28. PubMed ID: 25968719
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Scalable Top-Down Approach Tailored by Interferometric Lithography to Achieve Large-Area Single-Mode GaN Nanowire Laser Arrays on Sapphire Substrate.
    Behzadirad M; Nami M; Wostbrock N; Zamani Kouhpanji MR; Feezell DF; Brueck SRJ; Busani T
    ACS Nano; 2018 Mar; 12(3):2373-2380. PubMed ID: 29401381
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Low-Threshold Miniaturized Plasmonic Nanowire Laser with High-Reflectivity Metal Mirrors.
    Zheng J; Yan X; Wei W; Wu C; Sibirev N; Zhang X; Ren X
    Nanomaterials (Basel); 2020 Sep; 10(10):. PubMed ID: 32992493
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mode Switching and Filtering in Nanowire Lasers.
    Röder R; Sidiropoulos TP; Buschlinger R; Riediger M; Peschel U; Oulton RF; Ronning C
    Nano Lett; 2016 Apr; 16(4):2878-84. PubMed ID: 27007261
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Anisotropic Radiation in Heterostructured "Emitter in a Cavity" Nanowire.
    Kuznetsov A; Roy P; Kondratev VM; Fedorov VV; Kotlyar KP; Reznik RR; Vorobyev AA; Mukhin IS; Cirlin GE; Bolshakov AD
    Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055259
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dual-color single-mode lasing in axially coupled organic nanowire resonators.
    Zhang C; Zou CL; Dong H; Yan Y; Yao J; Zhao YS
    Sci Adv; 2017 Jul; 3(7):e1700225. PubMed ID: 28785731
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.