These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33287146)

  • 1. Graphene H-Waveguide for Terahertz Lasing Applications: Electromagnetic Quasi-Linear Theory.
    Kouzaev GA
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33287146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terahertz amplification and lasing by using transverse electric modes in a two-layer-graphene-dielectric waveguide structure with direct current.
    Moiseenko IM; Popov VV; Fateev DV
    J Phys Condens Matter; 2023 Apr; 35(25):. PubMed ID: 36963112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical Analysis of Terahertz Dielectric-Loaded Graphene Waveguide.
    Teng D; Wang K
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33467556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "Fast" Plasmons Propagating in Graphene Plasmonic Waveguides with Negative Index Metamaterial Claddings.
    Zhao Z; Su S; Zhou H; Qiu W; Qiu P; Kan Q
    Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32825372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene-based terahertz reconfigurable printed ridge gap waveguide structure.
    Ali MMM; Shams SI; Elsaadany M; Gagnon G; Wu K
    Sci Rep; 2022 Dec; 12(1):21111. PubMed ID: 36473883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lasing Action from Quasi-Propagating Modes.
    Tan MJH; Park JE; Freire-Fernández F; Guan J; Juarez XG; Odom TW
    Adv Mater; 2022 Aug; 34(34):e2203999. PubMed ID: 35734937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable tapered waveguide for efficient compression of light to graphene surface plasmons.
    Cheng BH; Chen HW; Jen YJ; Lan YC; Tsai DP
    Sci Rep; 2016 Jun; 6():28799. PubMed ID: 27353171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasensitive Terahertz Biosensors Based on Fano Resonance of a Graphene/Waveguide Hybrid Structure.
    Ruan B; Guo J; Wu L; Zhu J; You Q; Dai X; Xiang Y
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28825677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Terahertz surface plasmons in optically pumped graphene structures.
    Dubinov AA; Aleshkin VY; Mitin V; Otsuji T; Ryzhii V
    J Phys Condens Matter; 2011 Apr; 23(14):145302. PubMed ID: 21441654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Domino plasmons for subwavelength terahertz circuitry.
    Martin-Cano D; Nesterov ML; Fernandez-Dominguez AI; Garcia-Vidal FJ; Martin-Moreno L; Moreno E
    Opt Express; 2010 Jan; 18(2):754-64. PubMed ID: 20173896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of nonlocal plasmons in gapped graphene micro-ribbon array and two-dimensional electron gas on near-field electromagnetic response in the deep subwavelength regime.
    Huang D; Gumbs G; Roslyak O
    Appl Opt; 2013 Feb; 52(4):755-69. PubMed ID: 23385917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [A Compact Source of Terahertz Radiation Based on Interaction of Electrons in à Quantum Well with an Electromagnetic Wave of a Corrugated Waveguide].
    Shchurova LY; Namiot VA; Sarkisyan DR
    Biofizika; 2015; 60(4):787-96. PubMed ID: 26394479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards loss compensated and lasing terahertz metamaterials based on optically pumped graphene.
    Weis P; Garcia-Pomar JL; Rahm M
    Opt Express; 2014 Apr; 22(7):8473-89. PubMed ID: 24718220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable hybridization of graphene plasmons and dielectric modes for highly confined light transmit at terahertz wavelength.
    He XQ; Ning TG; Pei L; Zheng JJ; Li J; Wen XD
    Opt Express; 2019 Mar; 27(5):5961-5972. PubMed ID: 30876188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced Loss and Prevention of Substrate Modes with a Novel Coplanar Waveguide Based on Gap Waveguide Technology.
    Biurrun-Quel C; Teniente J; Del-Río C
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emission of terahertz plasmons from driven electrons in grated graphene.
    Zhao C; Liu Y; Qie Y; Han F; Yang H; Dong H
    Opt Express; 2019 Sep; 27(19):26569-26578. PubMed ID: 31674535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid Airy plasmons with dynamically steerable trajectories.
    Li R; Imran M; Lin X; Wang H; Xu Z; Chen H
    Nanoscale; 2017 Jan; 9(4):1449-1456. PubMed ID: 27830855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear Terahertz Absorption of Graphene Plasmons.
    Jadidi MM; König-Otto JC; Winnerl S; Sushkov AB; Drew HD; Murphy TE; Mittendorff M
    Nano Lett; 2016 Apr; 16(4):2734-8. PubMed ID: 26978242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transmission properties and molecular sensing application of CGPW.
    Yang J; Yang J; Deng W; Mao F; Huang M
    Opt Express; 2015 Dec; 23(25):32289-99. PubMed ID: 26699019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Terahertz photonic states in semiconductor-graphene cylinder structures.
    Yuan Y; Yao J; Xu W
    Opt Lett; 2012 Mar; 37(5):960-2. PubMed ID: 22378452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.