These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
387 related articles for article (PubMed ID: 33287151)
1. Islam MA; Guo J; Peng H; Tian S; Bai X; Zhu H; Kang Z; Guo J Genes (Basel); 2020 Dec; 11(12):. PubMed ID: 33287151 [TBL] [Abstract][Full Text] [Related]
2. Hawku MD; Goher F; Islam MA; Guo J; He F; Bai X; Yuan P; Kang Z; Guo J Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33669850 [TBL] [Abstract][Full Text] [Related]
3. TaEIL1, a wheat homologue of AtEIN3, acts as a negative regulator in the wheat-stripe rust fungus interaction. Duan X; Wang X; Fu Y; Tang C; Li X; Cheng Y; Feng H; Huang L; Kang Z Mol Plant Pathol; 2013 Sep; 14(7):728-39. PubMed ID: 23730729 [TBL] [Abstract][Full Text] [Related]
4. TaClpS1, negatively regulates wheat resistance against Puccinia striiformis f. sp. tritici. Yang Q; Islam MA; Cai K; Tian S; Liu Y; Kang Z; Guo J BMC Plant Biol; 2020 Dec; 20(1):555. PubMed ID: 33302867 [TBL] [Abstract][Full Text] [Related]
5. Glycerol-3-phosphate metabolism in wheat contributes to systemic acquired resistance against Puccinia striiformis f. sp. tritici. Yang Y; Zhao J; Liu P; Xing H; Li C; Wei G; Kang Z PLoS One; 2013; 8(11):e81756. PubMed ID: 24312351 [TBL] [Abstract][Full Text] [Related]
6. Wheat Gene Mamun MA; Tang C; Sun Y; Islam MN; Liu P; Wang X; Kang Z Int J Mol Sci; 2018 Jun; 19(6):. PubMed ID: 29874811 [TBL] [Abstract][Full Text] [Related]
7. Effectors of Su Y; Chen Y; Chen J; Zhang Z; Guo J; Cai Y; Zhu C; Li Z; Zhang H Int J Mol Sci; 2021 May; 22(9):. PubMed ID: 34067160 [No Abstract] [Full Text] [Related]
8. A R2R3 MYB Transcription Factor, Hawku MD; He F; Bai X; Islam MA; Huang X; Kang Z; Guo J Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430549 [TBL] [Abstract][Full Text] [Related]
9. NBS-LRR Gene Hu Y; Tao F; Su C; Zhang Y; Li J; Wang J; Xu X; Chen X; Shang H; Hu X Phytopathology; 2021 Aug; 111(8):1449-1458. PubMed ID: 33342265 [TBL] [Abstract][Full Text] [Related]
10. Wheat hypersensitive-induced reaction genes TaHIR1 and TaHIR3 are involved in response to stripe rust fungus infection and abiotic stresses. Duan Y; Guo J; Shi X; Guan X; Liu F; Bai P; Huang L; Kang Z Plant Cell Rep; 2013 Feb; 32(2):273-83. PubMed ID: 23111787 [TBL] [Abstract][Full Text] [Related]
11. The RLK protein TaCRK10 activates wheat high-temperature seedling-plant resistance to stripe rust through interacting with TaH2A.1. Wang J; Wang J; Li J; Shang H; Chen X; Hu X Plant J; 2021 Dec; 108(5):1241-1255. PubMed ID: 34583419 [TBL] [Abstract][Full Text] [Related]
12. TaCIPK10 interacts with and phosphorylates TaNH2 to activate wheat defense responses to stripe rust. Liu P; Guo J; Zhang R; Zhao J; Liu C; Qi T; Duan Y; Kang Z; Guo J Plant Biotechnol J; 2019 May; 17(5):956-968. PubMed ID: 30451367 [TBL] [Abstract][Full Text] [Related]
13. vsiRNAs derived from the miRNA-generating sites of pri-tae-miR159a based on the BSMV system play positive roles in the wheat response to Puccinia striiformis f. sp. tritici through the regulation of taMyb3 expression. Feng H; Zhang Q; Li H; Wang X; Wang X; Duan X; Wang B; Kang Z Plant Physiol Biochem; 2013 Jul; 68():90-5. PubMed ID: 23665893 [TBL] [Abstract][Full Text] [Related]
14. Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. Chen W; Wellings C; Chen X; Kang Z; Liu T Mol Plant Pathol; 2014 Jun; 15(5):433-46. PubMed ID: 24373199 [TBL] [Abstract][Full Text] [Related]
15. Wheat TaNPSN SNARE homologues are involved in vesicle-mediated resistance to stripe rust (Puccinia striiformis f. sp. tritici). Wang X; Wang X; Deng L; Chang H; Dubcovsky J; Feng H; Han Q; Huang L; Kang Z J Exp Bot; 2014 Sep; 65(17):4807-20. PubMed ID: 24963004 [TBL] [Abstract][Full Text] [Related]
16. Monodehydroascorbate reductase gene, regulated by the wheat PN-2013 miRNA, contributes to adult wheat plant resistance to stripe rust through ROS metabolism. Feng H; Wang X; Zhang Q; Fu Y; Feng C; Wang B; Huang L; Kang Z Biochim Biophys Acta; 2014 Jan; 1839(1):1-12. PubMed ID: 24269602 [TBL] [Abstract][Full Text] [Related]
17. Comparative transcriptomic insights into molecular mechanisms of the susceptibility wheat variety MX169 response to Lv X; Deng J; Zhou C; Abdullah A; Yang Z; Wang Z; Yang L; Zhao B; Li Y; Ma Z Microbiol Spectr; 2024 Aug; 12(8):e0377423. PubMed ID: 38916358 [TBL] [Abstract][Full Text] [Related]
18. An Avirulence Gene Cluster in the Wheat Stripe Rust Pathogen (Puccinia striiformis f. sp. Xia C; Lei Y; Wang M; Chen W; Chen X mSphere; 2020 Jun; 5(3):. PubMed ID: 32554716 [No Abstract] [Full Text] [Related]
19. Transcriptome analysis provides insights into the mechanisms underlying wheat cultivar Shumai126 responding to stripe rust. Wang Y; Huang L; Luo W; Jin Y; Gong F; He J; Liu D; Zheng Y; Wu B Gene; 2021 Feb; 768():145290. PubMed ID: 33157204 [TBL] [Abstract][Full Text] [Related]
20. The wheat WRKY transcription factors TaWRKY49 and TaWRKY62 confer differential high-temperature seedling-plant resistance to Puccinia striiformis f. sp. tritici. Wang J; Tao F; Tian W; Guo Z; Chen X; Xu X; Shang H; Hu X PLoS One; 2017; 12(7):e0181963. PubMed ID: 28742872 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]