These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 33287158)
1. Alternative Extraction and Characterization of Nitrogen-Containing Azaphilone Red Pigments and Ergosterol Derivatives from the Marine-Derived Fungal Lebeau J; Petit T; Fouillaud M; Dufossé L; Caro Y Microorganisms; 2020 Dec; 8(12):. PubMed ID: 33287158 [TBL] [Abstract][Full Text] [Related]
2. Azaphilone alkaloids: prospective source of natural food pigments. Liu L; Wang Z Appl Microbiol Biotechnol; 2022 Jan; 106(2):469-484. PubMed ID: 34921328 [TBL] [Abstract][Full Text] [Related]
4. Production and New Extraction Method of Polyketide Red Pigments Produced by Ascomycetous Fungi from Terrestrial and Marine Habitats. Lebeau J; Venkatachalam M; Fouillaud M; Petit T; Vinale F; Dufossé L; Caro Y J Fungi (Basel); 2017 Jun; 3(3):. PubMed ID: 29371552 [TBL] [Abstract][Full Text] [Related]
5. OVAT Analysis and Response Surface Methodology Based on Nutrient Sources for Optimization of Pigment Production in the Marine-Derived Fungus Venkatachalam M; Shum-Chéong-Sing A; Caro Y; Dufossé L; Fouillaud M Mar Drugs; 2021 Apr; 19(5):. PubMed ID: 33925595 [TBL] [Abstract][Full Text] [Related]
6. Identification of azaphilone derivatives of Monascus colorants from Talaromyces amestolkiae and their halochromic properties. de Oliveira F; Rocha ILD; Cláudia Gouveia Alves Pinto D; Ventura SPM; Gonzaga Dos Santos A; José Crevelin E; de Carvalho Santos Ebinuma V Food Chem; 2022 Mar; 372():131214. PubMed ID: 34619523 [TBL] [Abstract][Full Text] [Related]
7. Aqueous Two-Phase System Extraction of Polyketide-Based Fungal Pigments Using Ammonium- or Imidazolium-Based Ionic Liquids for Detection Purpose: A Case Study. Lebeau J; Petit T; Fouillaud M; Dufossé L; Caro Y J Fungi (Basel); 2020 Dec; 6(4):. PubMed ID: 33352851 [TBL] [Abstract][Full Text] [Related]
8. Terminal carboxylation of branched carbon chain contributing to acidic stability of azaphilone pigments from a new isolate of Talaromyces amestolkiae. Xue Y; Wang L; Zhang X; Wang Z Food Chem; 2023 Oct; 424():136338. PubMed ID: 37207602 [TBL] [Abstract][Full Text] [Related]
9. Chemical Profiling, Bioactivity Evaluation and the Discovery of a Novel Biopigment Produced by Tsiailanis AD; Pateraki C; Kyriazou M; Chatzigiannis CM; Chatziathanasiadou M; Parisis N; Mandala I; Tzakos AG; Koutinas A Molecules; 2021 Dec; 27(1):. PubMed ID: 35011300 [TBL] [Abstract][Full Text] [Related]
10. Talaromyces atroroseus, a new species efficiently producing industrially relevant red pigments. Frisvad JC; Yilmaz N; Thrane U; Rasmussen KB; Houbraken J; Samson RA PLoS One; 2013; 8(12):e84102. PubMed ID: 24367630 [TBL] [Abstract][Full Text] [Related]
11. A local Talaromyces atroroseus TRP-NRC isolate: isolation, genetic improvement, and biotechnological approach combined with LC/HRESI-MS characterization, skin safety, and wool fabric dyeing ability of the produced red pigment mixture. Salim RG; Fadel M; Youssef YA; Taie HAA; Abosereh NA; El-Sayed GM; Marzouk M J Genet Eng Biotechnol; 2022 Apr; 20(1):62. PubMed ID: 35451646 [TBL] [Abstract][Full Text] [Related]
12. Atrorosins: a new subgroup of Monascus pigments from Talaromyces atroroseus. Isbrandt T; Tolborg G; Ødum A; Workman M; Larsen TO Appl Microbiol Biotechnol; 2020 Jan; 104(2):615-622. PubMed ID: 31802169 [TBL] [Abstract][Full Text] [Related]
13. Salinity and Temperature Influence Growth and Pigment Production in the Marine-Derived Fungal Strain Venkatachalam M; Gérard L; Milhau C; Vinale F; Dufossé L; Fouillaud M Microorganisms; 2019 Jan; 7(1):. PubMed ID: 30626101 [TBL] [Abstract][Full Text] [Related]
14. Characterization of an Endophytic Strain Mishra RC; Kalra R; Dilawari R; Deshmukh SK; Barrow CJ; Goel M Front Microbiol; 2021; 12():665702. PubMed ID: 34421835 [TBL] [Abstract][Full Text] [Related]
15. PP-O and PP-V, Monascus pigment homologues, production, and phylogenetic analysis in Penicillium purpurogenum. Arai T; Kojima R; Motegi Y; Kato J; Kasumi T; Ogihara J Fungal Biol; 2015 Dec; 119(12):1226-1236. PubMed ID: 26615745 [TBL] [Abstract][Full Text] [Related]
16. Genetic localization and in vivo characterization of a Monascus azaphilone pigment biosynthetic gene cluster. Balakrishnan B; Karki S; Chiu SH; Kim HJ; Suh JW; Nam B; Yoon YM; Chen CC; Kwon HJ Appl Microbiol Biotechnol; 2013 Jul; 97(14):6337-45. PubMed ID: 23504076 [TBL] [Abstract][Full Text] [Related]
17. Biodiversity of Pigmented Fungi Isolated from Marine Environment in La Réunion Island, Indian Ocean: New Resources for Colored Metabolites. Fouillaud M; Venkatachalam M; Llorente M; Magalon H; Cuet P; Dufossé L J Fungi (Basel); 2017 Jul; 3(3):. PubMed ID: 29371553 [TBL] [Abstract][Full Text] [Related]
18. Pigments and citrinin biosynthesis by fungi belonging to genus Monascus. Pisareva E; Savov V; Kujumdzieva A Z Naturforsch C J Biosci; 2005; 60(1-2):116-20. PubMed ID: 15787255 [TBL] [Abstract][Full Text] [Related]
19. Characterization of an hyperpigmenting mutant of Monascus purpureus IB1: identification of two novel pigment chemical structures. Campoy S; Rumbero A; Martín JF; Liras P Appl Microbiol Biotechnol; 2006 Apr; 70(4):488-96. PubMed ID: 16151799 [TBL] [Abstract][Full Text] [Related]
20. The regulation mechanisms of soluble starch and glycerol for production of azaphilone pigments in Monascus purpureus FAFU618 as revealed by comparative proteomic and transcriptional analyses. Huang ZR; Zhou WB; Yang XL; Tong AJ; Hong JL; Guo WL; Li TT; Jia RB; Pan YY; Lin J; Lv XC; Liu B Food Res Int; 2018 Apr; 106():626-635. PubMed ID: 29579968 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]