BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 33287240)

  • 1. Advances in Targeting Cancer-Associated Genes by Designed siRNA in Prostate Cancer.
    Bahreyni A; Luo H
    Cancers (Basel); 2020 Dec; 12(12):. PubMed ID: 33287240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanotechnology As Potential Tool for siRNA Delivery in Parkinson's Disease.
    Cortes H; Alcala-Alcala S; Avalos-Fuentes A; Mendoza-Munoz N; Quintanar-Guerrero D; Leyva-Gomez G; Floran B
    Curr Drug Targets; 2017 Nov; 18(16):1866-1879. PubMed ID: 28325145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanovehicle-based Small Interfering RNA (siRNA) Delivery for Therapeutic Purposes: A New Molecular Approach in Pharmacogenomics.
    Akhtari J; Tafazoli A; Mehrad-Majd H; Mahrooz A
    Curr Clin Pharmacol; 2018; 13(3):173-182. PubMed ID: 29992895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in siRNA delivery for cancer therapy using smart nanocarriers.
    Zhang P; An K; Duan X; Xu H; Li F; Xu F
    Drug Discov Today; 2018 Apr; 23(4):900-911. PubMed ID: 29373841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the Kinetics of Lipid-Nanoparticle- Mediated Delivery of Multiple siRNAs to Evaluate the Effect on Competition for Ago2.
    Mihaila R; Ruhela D; Galinski B; Card A; Cancilla M; Shadel T; Kang J; Tep S; Wei J; Haas RM; Caldwell J; Flanagan WM; Kuklin N; Cherkaev E; Ason B
    Mol Ther Nucleic Acids; 2019 Jun; 16():367-377. PubMed ID: 30991218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient delivery of small interfering RNAs targeting particular mRNAs into pancreatic cancer cells inhibits invasiveness and metastasis of pancreatic tumors.
    Taniuchi K; Yawata T; Tsuboi M; Ueba T; Saibara T
    Oncotarget; 2019 Apr; 10(30):2869-2886. PubMed ID: 31080558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of putative miRNA binding sites and mRNA 3' ends as targets for siRNA-mediated gene knockdown.
    Bergauer T; Krueger U; Lader E; Pilk S; Wolter I; Bielke W
    Oligonucleotides; 2009 Mar; 19(1):41-52. PubMed ID: 19196098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of functional small interfering RNAs targeting amyotrophic lateral sclerosis-associated mutant alleles.
    Geng CM; Ding HL
    Chin Med J (Engl); 2011 Jan; 124(1):106-10. PubMed ID: 21362317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro and in vivo therapeutic siRNA delivery induced by a tryptophan-rich endosomolytic peptide.
    Xu W; Jafari M; Yuan F; Pan R; Chen B; Ding Y; Sheinin T; Chu D; Lu S; Yuan Y; Chen P
    J Mater Chem B; 2014 Sep; 2(36):6010-6019. PubMed ID: 32261853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and Delivery of Therapeutic siRNAs: Application to MERS-Coronavirus.
    Sohrab SS; El-Kafrawy SA; Mirza Z; Kamal MA; Azhar EI
    Curr Pharm Des; 2018; 24(1):62-77. PubMed ID: 29119921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene silencing through RNA interference (RNAi) in vivo: strategies based on the direct application of siRNAs.
    Aigner A
    J Biotechnol; 2006 Jun; 124(1):12-25. PubMed ID: 16413079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting Cell Adhesion Molecules via Carbonate Apatite-Mediated Delivery of Specific siRNAs to Breast Cancer Cells In Vitro and In Vivo.
    Ashaie MA; Islam RA; Kamaruzman NI; Ibnat N; Tha KK; Chowdhury EH
    Pharmaceutics; 2019 Jul; 11(7):. PubMed ID: 31269666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Delivery strategies and potential targets for siRNA in major cancer types.
    Lee SJ; Kim MJ; Kwon IC; Roberts TM
    Adv Drug Deliv Rev; 2016 Sep; 104():2-15. PubMed ID: 27259398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA interference-mediated gene silencing of pleiotrophin through polyethylenimine-complexed small interfering RNAs in vivo exerts antitumoral effects in glioblastoma xenografts.
    Grzelinski M; Urban-Klein B; Martens T; Lamszus K; Bakowsky U; Höbel S; Czubayko F; Aigner A
    Hum Gene Ther; 2006 Jul; 17(7):751-66. PubMed ID: 16839274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. siRNA: a potential tool for future breast cancer therapy?
    Størvold GL; Andersen TI; Perou CM; Frengen E
    Crit Rev Oncog; 2006 Jul; 12(1-2):127-50. PubMed ID: 17078209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular Delivery of siRNAs Using Bolaamphiphiles.
    Gupta K
    Methods Mol Biol; 2017; 1632():187-205. PubMed ID: 28730440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyethylenimines for RNAi-mediated gene targeting in vivo and siRNA delivery to the lung.
    Günther M; Lipka J; Malek A; Gutsch D; Kreyling W; Aigner A
    Eur J Pharm Biopharm; 2011 Apr; 77(3):438-49. PubMed ID: 21093588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soft computing model for optimized siRNA design by identifying off target possibilities using artificial neural network model.
    Murali R; John PG; Peter S D
    Gene; 2015 May; 562(2):152-8. PubMed ID: 25725126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticles for targeted delivery of therapeutics and small interfering RNAs in hepatocellular carcinoma.
    Varshosaz J; Farzan M
    World J Gastroenterol; 2015 Nov; 21(42):12022-41. PubMed ID: 26576089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in siRNA delivery to T-cells: potential clinical applications for inflammatory disease, cancer and infection.
    Freeley M; Long A
    Biochem J; 2013 Oct; 455(2):133-47. PubMed ID: 24070422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.