BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 33287542)

  • 1. Metabolic Engineering of
    Li L; Li Z; Yao W; Zhang X; Wang R; Li P; Yang K; Wang T; Liu K
    J Agric Food Chem; 2020 Dec; 68(50):14832-14840. PubMed ID: 33287542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic engineering of Pseudomonas chlororaphis GP72 for the enhanced production of 2-Hydroxyphenazine.
    Liu K; Hu H; Wang W; Zhang X
    Microb Cell Fact; 2016 Jul; 15(1):131. PubMed ID: 27470070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced biosynthesis of phenazine-1-carboxamide by Pseudomonas chlororaphis strains using statistical experimental designs.
    Peng H; Tan J; Bilal M; Wang W; Hu H; Zhang X
    World J Microbiol Biotechnol; 2018 Aug; 34(9):129. PubMed ID: 30094643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced biosynthesis of phenazine-1-carboxamide by engineered Pseudomonas chlororaphis HT66.
    Peng H; Zhang P; Bilal M; Wang W; Hu H; Zhang X
    Microb Cell Fact; 2018 Jul; 17(1):117. PubMed ID: 30045743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. iTRAQ-based quantitative proteomic analysis reveals potential factors associated with the enhancement of phenazine-1-carboxamide production in Pseudomonas chlororaphis P3.
    Jin XJ; Peng HS; Hu HB; Huang XQ; Wang W; Zhang XH
    Sci Rep; 2016 Jun; 6():27393. PubMed ID: 27273243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing an Artificial Pathway for the Biosynthesis of a Novel Phenazine
    Guo S; Liu R; Wang W; Hu H; Li Z; Zhang X
    ACS Synth Biol; 2020 Apr; 9(4):883-892. PubMed ID: 32197042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosynthesis and metabolic engineering of 1-hydroxyphenazine in Pseudomonas chlororaphis H18.
    Wan Y; Liu H; Xian M; Huang W
    Microb Cell Fact; 2021 Dec; 20(1):235. PubMed ID: 34965873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a Strong Quorum Sensing- and Thermo-Regulated Promoter for the Biosynthesis of a New Metabolite Pesticide Phenazine-1-carboxamide in
    Jin ZJ; Zhou L; Sun S; Cui Y; Song K; Zhang X; He YW
    ACS Synth Biol; 2020 Jul; 9(7):1802-1812. PubMed ID: 32584550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering of glycerol utilization in Pseudomonas chlororaphis GP72 for enhancing phenazine-1-carboxylic acid production.
    Song C; Yue SJ; Liu WH; Zheng YF; Zhang CH; Feng TT; Hu HB; Wang W; Zhang XH
    World J Microbiol Biotechnol; 2020 Mar; 36(3):49. PubMed ID: 32157439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PhzA, the shunt switch of phenazine-1,6-dicarboxylic acid biosynthesis in Pseudomonas chlororaphis HT66.
    Guo S; Wang Y; Dai B; Wang W; Hu H; Huang X; Zhang X
    Appl Microbiol Biotechnol; 2017 Oct; 101(19):7165-7175. PubMed ID: 28871340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial Synthesis of Antibacterial Phenazine-1,6-dicarboxylic Acid and the Role of PhzG in
    Guo S; Wang Y; Bilal M; Hu H; Wang W; Zhang X
    J Agric Food Chem; 2020 Feb; 68(8):2373-2380. PubMed ID: 32013409
    [No Abstract]   [Full Text] [Related]  

  • 12. Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp. strains.
    Chin-A-Woeng TF; Thomas-Oates JE; Lugtenberg BJ; Bloemberg GV
    Mol Plant Microbe Interact; 2001 Aug; 14(8):1006-15. PubMed ID: 11497461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of Antibacterial Questiomycin A in Metabolically Engineered
    Guo S; Hu H; Wang W; Bilal M; Zhang X
    J Agric Food Chem; 2022 Jun; 70(25):7742-7750. PubMed ID: 35708224
    [No Abstract]   [Full Text] [Related]  

  • 14. Population genomics-guided engineering of phenazine biosynthesis in Pseudomonas chlororaphis.
    Thorwall S; Trivedi V; Ottum E; Wheeldon I
    Metab Eng; 2023 Jul; 78():223-234. PubMed ID: 37369325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification, synthesis and regulatory function of the N-acylated homoserine lactone signals produced by Pseudomonas chlororaphis HT66.
    Peng H; Ouyang Y; Bilal M; Wang W; Hu H; Zhang X
    Microb Cell Fact; 2018 Jan; 17(1):9. PubMed ID: 29357848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterologous production of rhamnolipids in Pseudomonas chlororaphis subsp chlororaphis ATCC 9446 based on the endogenous production of N-acyl-homoserine lactones.
    González-Valdez A; Escalante A; Soberón-Chávez G
    Microb Biotechnol; 2024 Jan; 17(1):e14377. PubMed ID: 38041625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative metabolomics and transcriptomics analyses provide insights into the high-yield mechanism of phenazines biosynthesis in Pseudomonas chlororaphis GP72.
    Li S; Yue SJ; Huang P; Feng TT; Zhang HY; Yao RL; Wang W; Zhang XH; Hu HB
    J Appl Microbiol; 2022 Nov; 133(5):2790-2801. PubMed ID: 35870153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lon protease downregulates phenazine-1-carboxamide biosynthesis by degrading the quorum sensing signal synthase PhzI and exhibits negative feedback regulation of Lon itself in Pseudomonas chlororaphis HT66.
    Wang Z; Huang X; Jan M; Kong D; Wang W; Zhang X
    Mol Microbiol; 2021 Aug; 116(2):690-706. PubMed ID: 34097792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic reconstruction of Pseudomonas chlororaphis ATCC 9446 to understand its metabolic potential as a phenazine-1-carboxamide-producing strain.
    Moreno-Avitia F; Utrilla J; Bolívar F; Nogales J; Escalante A
    Appl Microbiol Biotechnol; 2020 Dec; 104(23):10119-10132. PubMed ID: 32984920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosynthesis and genetic engineering of phenazine-1-carboxylic acid in
    Liu K; Li Z; Liang X; Xu Y; Cao Y; Wang R; Li P; Li L
    Front Microbiol; 2023; 14():1186052. PubMed ID: 37168109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.