BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 33287712)

  • 1. The genetic control of leaf and petal allometric variations in Arabidopsis thaliana.
    Li X; Zhang Y; Yang S; Wu C; Shao Q; Feng X
    BMC Plant Biol; 2020 Dec; 20(1):547. PubMed ID: 33287712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative trait loci mapping of floral and leaf morphology traits in Arabidopsis thaliana: evidence for modular genetic architecture.
    Juenger T; Pérez-Pérez JM; Bernal S; Micol JL
    Evol Dev; 2005; 7(3):259-71. PubMed ID: 15876198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural variation identifies multiple loci controlling petal shape and size in Arabidopsis thaliana.
    Abraham MC; Metheetrairut C; Irish VF
    PLoS One; 2013; 8(2):e56743. PubMed ID: 23418598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative trait loci controlling leaf venation in Arabidopsis.
    Rishmawi L; Bühler J; Jaegle B; Hülskamp M; Koornneef M
    Plant Cell Environ; 2017 Aug; 40(8):1429-1441. PubMed ID: 28252189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of allometry in antirrhinum.
    Feng X; Wilson Y; Bowers J; Kennaway R; Bangham A; Hannah A; Coen E; Hudson A
    Plant Cell; 2009 Oct; 21(10):2999-3007. PubMed ID: 19880796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic architecture of variation in Arabidopsis thaliana rosettes.
    Morón-García O; Garzón-Martínez GA; Martínez-Martín MJP; Brook J; Corke FMK; Doonan JH; Camargo Rodríguez AV
    PLoS One; 2022; 17(2):e0263985. PubMed ID: 35171969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined genetic and modeling approaches reveal that epidermal cell area and number in leaves are controlled by leaf and plant developmental processes in Arabidopsis.
    Tisné S; Reymond M; Vile D; Fabre J; Dauzat M; Koornneef M; Granier C
    Plant Physiol; 2008 Oct; 148(2):1117-27. PubMed ID: 18701672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The genetic architecture of petal number in Cardamine hirsuta.
    Pieper B; Monniaux M; Hay A
    New Phytol; 2016 Jan; 209(1):395-406. PubMed ID: 26268614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study of the genetic bases of natural variation in tomato leaf, sepal, and petal morphology.
    Frary A; Fritz LA; Tanksley SD
    Theor Appl Genet; 2004 Aug; 109(3):523-33. PubMed ID: 15150691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative trait locus analysis of growth-related traits in a new Arabidopsis recombinant inbred population.
    El-Lithy ME; Clerkx EJ; Ruys GJ; Koornneef M; Vreugdenhil D
    Plant Physiol; 2004 May; 135(1):444-58. PubMed ID: 15122039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic analysis of natural variations in the architecture of Arabidopsis thaliana vegetative leaves.
    Pérez-Pérez JM; Serrano-Cartagena J; Micol JL
    Genetics; 2002 Oct; 162(2):893-915. PubMed ID: 12399398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic dissection of leaf development in Brassica rapa using a genetical genomics approach.
    Xiao D; Wang H; Basnet RK; Zhao J; Lin K; Hou X; Bonnema G
    Plant Physiol; 2014 Mar; 164(3):1309-25. PubMed ID: 24394778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stochastic variation in Cardamine hirsuta petal number.
    Monniaux M; Pieper B; Hay A
    Ann Bot; 2016 Apr; 117(5):881-7. PubMed ID: 26346720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Screening of Candidate Leaf Morphology Genes by Integration of QTL Mapping and RNA Sequencing Technologies in Oilseed Rape (Brassica napus L.).
    Jian H; Yang B; Zhang A; Zhang L; Xu X; Li J; Liu L
    PLoS One; 2017; 12(1):e0169641. PubMed ID: 28068426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The genetic control of leaf allometry in the common bean, Phaseolus vulgaris.
    Zhang M; Zhang S; Ye M; Jiang L; Vallejos CE; Wu R
    BMC Genet; 2020 Mar; 21(1):29. PubMed ID: 32169029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QTL mapping for flag leaf-related traits and genetic effect of QFLW-6A on flag leaf width using two related introgression line populations in wheat.
    Yan X; Wang S; Yang B; Zhang W; Cao Y; Shi Y; Sun D; Jing R
    PLoS One; 2020; 15(3):e0229912. PubMed ID: 32191715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QTL mapping analysis of maize plant type based on SNP molecular marker.
    Zhu W; Zhao Y; Liu J; Huang L; Lu X; Kang D
    Cell Mol Biol (Noisy-le-grand); 2019 Feb; 65(2):18-27. PubMed ID: 30860467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative trait loci (QTL) analysis of leaf related traits in spinach (Spinacia oleracea L.).
    Liu Z; She H; Xu Z; Zhang H; Li G; Zhang S; Qian W
    BMC Plant Biol; 2021 Jun; 21(1):290. PubMed ID: 34167476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of a high-density genetic map and its application for leaf shape QTL mapping in poplar.
    Xia W; Xiao Z; Cao P; Zhang Y; Du K; Wang N
    Planta; 2018 Nov; 248(5):1173-1185. PubMed ID: 30088086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative trait loci analysis of leaf and plant longevity in Arabidopsis thaliana.
    Luquez VM; Sasal Y; Medrano M; Martín MI; Mujica M; Guiamét JJ
    J Exp Bot; 2006; 57(6):1363-72. PubMed ID: 16547126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.