These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 33287829)

  • 21. Left atrial fibrosis correlates with extent of left ventricular myocardial delayed enhancement and left ventricular strain in hypertrophic cardiomyopathy.
    Latif SR; Nguyen VQ; Peters DC; Soufer A; Henry ML; Grunseich K; Testani J; Hur DJ; Huber S; Mojibian H; Dicks D; Sinusas AJ; Meadows JL; Papoutsidakis N; Jacoby D; Baldassarre LA
    Int J Cardiovasc Imaging; 2019 Jul; 35(7):1309-1318. PubMed ID: 30790116
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-Throughput Precision Phenotyping of Left Ventricular Hypertrophy With Cardiovascular Deep Learning.
    Duffy G; Cheng PP; Yuan N; He B; Kwan AC; Shun-Shin MJ; Alexander KM; Ebinger J; Lungren MP; Rader F; Liang DH; Schnittger I; Ashley EA; Zou JY; Patel J; Witteles R; Cheng S; Ouyang D
    JAMA Cardiol; 2022 Apr; 7(4):386-395. PubMed ID: 35195663
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Texture analysis of T2-weighted cardiovascular magnetic resonance imaging to discriminate between cardiac amyloidosis and hypertrophic cardiomyopathy.
    Huang S; Shi K; Zhang Y; Yan WF; Guo YK; Li Y; Yang ZG
    BMC Cardiovasc Disord; 2022 May; 22(1):235. PubMed ID: 35597906
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Parametric mapping using cardiovascular magnetic resonance for the differentiation of light chain amyloidosis and transthyretin-related amyloidosis.
    Kravchenko D; Isaak A; Zimmer S; Öztürk C; Mesropyan N; Bischoff LM; Voigt M; Ginzburg D; Attenberger U; Pieper CC; Kuetting D; Luetkens JA
    Eur Heart J Cardiovasc Imaging; 2024 Sep; 25(10):1451-1461. PubMed ID: 38912832
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Late gadolinium enhanced cardiac MR derived radiomics approach for predicting all-cause mortality in cardiac amyloidosis: a multicenter study.
    Zhou XY; Tang CX; Guo YK; Chen WC; Guo JZ; Ren GS; Li X; Li JH; Lu GM; Huang XH; Wang YN; Zhang LJ; Yang GF
    Eur Radiol; 2024 Jan; 34(1):402-410. PubMed ID: 37552255
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characteristic cardiac phenotypes are detected by cardiovascular magnetic resonance in patients with different clinical phenotypes and genotypes of mitochondrial myopathy.
    Florian A; Ludwig A; Stubbe-Dräger B; Boentert M; Young P; Waltenberger J; Rösch S; Sechtem U; Yilmaz A
    J Cardiovasc Magn Reson; 2015 May; 17(1):40. PubMed ID: 26001801
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3.0 T magnetic resonance myocardial perfusion imaging for semi-quantitative evaluation of coronary microvascular dysfunction in hypertrophic cardiomyopathy.
    Yin L; Xu HY; Zheng SS; Zhu Y; Xiao JX; Zhou W; Yu SS; Gong LG
    Int J Cardiovasc Imaging; 2017 Dec; 33(12):1949-1959. PubMed ID: 28612277
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Atrial function and geometry differences in transthyretin versus immunoglobulin light chain amyloidosis: a cardiac magnetic resonance study.
    Palmer C; Truong VT; Slivnick JA; Wolking S; Coleman P; Mazur W; Zareba KM
    Sci Rep; 2022 Jan; 12(1):140. PubMed ID: 34996915
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The diagnostic value of multiparameter cardiovascular magnetic resonance for early detection of light-chain amyloidosis from hypertrophic cardiomyopathy patients.
    Yue X; Yang L; Wang R; Chan Q; Yang Y; Wu X; Ruan X; Zhang Z; Wei Y; Wang F
    Front Cardiovasc Med; 2022; 9():1017097. PubMed ID: 36330005
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Z-score mapping for standardized analysis and reporting of cardiovascular magnetic resonance modified Look-Locker inversion recovery (MOLLI) T1 data: Normal behavior and validation in patients with amyloidosis.
    Kranzusch R; Aus dem Siepen F; Wiesemann S; Zange L; Jeuthe S; Ferreira da Silva T; Kuehne T; Pieske B; Tillmanns C; Friedrich MG; Schulz-Menger J; Messroghli DR
    J Cardiovasc Magn Reson; 2020 Jan; 22(1):6. PubMed ID: 31955712
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cardiac Magnetic Resonance T
    Duca F; Kammerlander AA; Panzenböck A; Binder C; Aschauer S; Loewe C; Agis H; Kain R; Hengstenberg C; Bonderman D; Mascherbauer J
    JACC Cardiovasc Imaging; 2018 Dec; 11(12):1924-1926. PubMed ID: 30121265
    [No Abstract]   [Full Text] [Related]  

  • 32. Role of cardiac magnetic resonance imaging in the detection of cardiac amyloidosis.
    Syed IS; Glockner JF; Feng D; Araoz PA; Martinez MW; Edwards WD; Gertz MA; Dispenzieri A; Oh JK; Bellavia D; Tajik AJ; Grogan M
    JACC Cardiovasc Imaging; 2010 Feb; 3(2):155-64. PubMed ID: 20159642
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The relationship between the quantitative extent of late gadolinium enhancement and burden of nonsustained ventricular tachycardia in hypertrophic cardiomyopathy: A delayed contrast-enhanced magnetic resonance study.
    Weissler-Snir A; Hindieh W; Spears DA; Adler A; Rakowski H; Chan RH
    J Cardiovasc Electrophysiol; 2019 May; 30(5):651-657. PubMed ID: 30680853
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Left Atrial Performance in the Course of Hypertrophic Cardiomyopathy: Relation to Left Ventricular Hypertrophy and Fibrosis.
    Kowallick JT; Silva Vieira M; Kutty S; Lotz J; Hasenfu G; Chiribiri A; Schuster A
    Invest Radiol; 2017 Mar; 52(3):177-185. PubMed ID: 27741021
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep learning algorithm to improve hypertrophic cardiomyopathy mutation prediction using cardiac cine images.
    Zhou H; Li L; Liu Z; Zhao K; Chen X; Lu M; Yin G; Song L; Zhao S; Zheng H; Tian J
    Eur Radiol; 2021 Jun; 31(6):3931-3940. PubMed ID: 33241513
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clinical and imaging characteristics of patients with cardiac amyloidosis- a single center observational study.
    Ingebrigtsen A; Saeed S; Larsen TH; Reikvam H
    Scand J Clin Lab Invest; 2024 May; 84(3):193-201. PubMed ID: 38709651
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Late gadolinium enhancement and T1 mapping for the diagnosis of cardiac amyloidosis].
    Cui Q; Yu J; Shen W
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2019 Dec; 31(12):1538-1541. PubMed ID: 32029045
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prognostic implications of global myocardial mechanics in hypertrophic cardiomyopathy by cardiovascular magnetic resonance feature tracking. Relations to left ventricular hypertrophy and fibrosis.
    Hinojar R; Fernández-Golfín C; González-Gómez A; Rincón LM; Plaza-Martin M; Casas E; García-Martín A; Fernandez-Mendez MA; Esteban A; Nacher JJJ; Zamorano JL
    Int J Cardiol; 2017 Dec; 249():467-472. PubMed ID: 29121751
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A compartment-based myocardial density approach helps to solve the native T1 vs. ECV paradox in cardiac amyloidosis.
    Chamling B; Bietenbeck M; Drakos S; Korthals D; Vehof V; Stalling P; Meier C; Yilmaz A
    Sci Rep; 2022 Dec; 12(1):21755. PubMed ID: 36526658
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pattern and prognostic value of cardiac involvement in patients with late-onset pompe disease: a comprehensive cardiovascular magnetic resonance approach.
    Boentert M; Florian A; Dräger B; Young P; Yilmaz A
    J Cardiovasc Magn Reson; 2016 Dec; 18(1):91. PubMed ID: 27931223
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.