These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Impact of oil type and WPI/Tween 80 ratio at the oil-water interface: Adsorption, interfacial rheology and emulsion features. Gomes A; Costa ALR; Cunha RL Colloids Surf B Biointerfaces; 2018 Apr; 164():272-280. PubMed ID: 29413606 [TBL] [Abstract][Full Text] [Related]
3. Formation and stability of W/O-high internal phase emulsions (HIPEs) and derived O/W emulsions stabilized by PGPR and lecithin. Okuro PK; Gomes A; Costa ALR; Adame MA; Cunha RL Food Res Int; 2019 Aug; 122():252-262. PubMed ID: 31229079 [TBL] [Abstract][Full Text] [Related]
4. Role of aqueous phase composition and hydrophilic emulsifier type on the stability of W/O/W emulsions. Chevalier RC; Gomes A; Cunha RL Food Res Int; 2022 Jun; 156():111123. PubMed ID: 35651003 [TBL] [Abstract][Full Text] [Related]
5. Stability and in vitro digestibility of emulsions containing lecithin and whey proteins. Mantovani RA; Cavallieri ÂL; Netto FM; Cunha RL Food Funct; 2013 Sep; 4(9):1322-31. PubMed ID: 23799542 [TBL] [Abstract][Full Text] [Related]
6. Synergistic performance of lecithin and glycerol monostearate in oil/water emulsions. Moran-Valero MI; Ruiz-Henestrosa VMP; Pilosof AMR Colloids Surf B Biointerfaces; 2017 Mar; 151():68-75. PubMed ID: 27987457 [TBL] [Abstract][Full Text] [Related]
7. Production of highly concentrated oil-in-water emulsions using dual-channel microfluidization: Use of individual and mixed natural emulsifiers (saponin and lecithin). Luo X; Zhou Y; Bai L; Liu F; Zhang R; Zhang Z; Zheng B; Deng Y; McClements DJ Food Res Int; 2017 Jun; 96():103-112. PubMed ID: 28528089 [TBL] [Abstract][Full Text] [Related]
9. Effect of Emulsifier Type, Maltodextrin, and β-Cyclodextrin on Physical and Oxidative Stability of Oil-In-Water Emulsions. Kibici D; Kahveci D J Food Sci; 2019 Jun; 84(6):1273-1280. PubMed ID: 31059587 [TBL] [Abstract][Full Text] [Related]
10. Interactions of β-carotene with WPI/Tween 80 mixture and oil phase: Effect on the behavior of O/W emulsions during in vitro digestion. Gomes A; Costa ALR; Cardoso DD; Náthia-Neves G; Meireles MAA; Cunha RL Food Chem; 2021 Mar; 341(Pt 2):128155. PubMed ID: 33045587 [TBL] [Abstract][Full Text] [Related]
11. A comparison of emulsifiers for the formation of oil-in-water emulsions: stability of the emulsions within 9 h after production and MR signal properties. Fritz V; Martirosian P; Machann J; Daniels R; Schick F MAGMA; 2022 Jun; 35(3):401-410. PubMed ID: 34698962 [TBL] [Abstract][Full Text] [Related]
12. Formation and stability of emulsions stabilized by Quillaja saponin-egg lecithin mixtures. Salminen H; Bischoff S; Weiss J J Food Sci; 2020 Apr; 85(4):1213-1222. PubMed ID: 32249411 [TBL] [Abstract][Full Text] [Related]
13. Cholecalciferol- and α-tocopherol-loaded walnut oil emulsions stabilized by whey protein isolate and soy lecithin for food applications. Kim YJ; Lee IY; Kim TE; Lee JH; Chun YG; Kim BK; Lee MH J Sci Food Agric; 2022 Oct; 102(13):5738-5749. PubMed ID: 35396740 [TBL] [Abstract][Full Text] [Related]
14. Impact of whey protein/surfactant mixture and oil type on the gastrointestinal fate of emulsions: Ingredient engineering. Gomes A; Costa ALR; Cardoso DD; Furtado GF; Cunha RL Food Res Int; 2020 Nov; 137():109360. PubMed ID: 33233063 [TBL] [Abstract][Full Text] [Related]
15. Physicochemical Properties and Cellular Uptake of Astaxanthin-Loaded Emulsions. Shen X; Fang T; Zheng J; Guo M Molecules; 2019 Feb; 24(4):. PubMed ID: 30781596 [TBL] [Abstract][Full Text] [Related]
16. Synergistic interactions between lecithin and fruit wax in oleogel formation. Okuro PK; Tavernier I; Bin Sintang MD; Skirtach AG; Vicente AA; Dewettinck K; Cunha RL Food Funct; 2018 Mar; 9(3):1755-1767. PubMed ID: 29508864 [TBL] [Abstract][Full Text] [Related]
17. Effects of tocopherols on the stability of flaxseed oil-in-water emulsions stabilized by different emulsifiers: Interfacial partitioning and interaction. Wang L; Yu X; Geng F; Cheng C; Yang J; Deng Q Food Chem; 2022 Apr; 374():131691. PubMed ID: 34883433 [TBL] [Abstract][Full Text] [Related]
18. Effect of oleogelation on physical properties and oxidative stability of camellia oil-based oleogels and oleogel emulsions. Pan J; Tang L; Dong Q; Li Y; Zhang H Food Res Int; 2021 Feb; 140():110057. PubMed ID: 33648281 [TBL] [Abstract][Full Text] [Related]
19. Formation of shelf stable Pickering high internal phase emulsions (HIPE) through the inclusion of whey protein microgels. Zamani S; Malchione N; Selig MJ; Abbaspourrad A Food Funct; 2018 Feb; 9(2):982-990. PubMed ID: 29334398 [TBL] [Abstract][Full Text] [Related]
20. Influence of biopolymer emulsifier type on formation and stability of rice bran oil-in-water emulsions: whey protein, gum arabic, and modified starch. Charoen R; Jangchud A; Jangchud K; Harnsilawat T; Naivikul O; McClements DJ J Food Sci; 2011; 76(1):E165-72. PubMed ID: 21535669 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]