These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 33288183)

  • 41. The glass-transition behaviour of wheat gluten proteins.
    Noel TR; Parker R; Ring SG; Tatham AS
    Int J Biol Macromol; 1995 Apr; 17(2):81-5. PubMed ID: 7547719
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Measuring glassy and viscoelastic polymer flow in molecular-scale gaps using a flat punch mechanical probe.
    Rowland HD; King WP; Cross GL; Pethica JB
    ACS Nano; 2008 Mar; 2(3):419-28. PubMed ID: 19206565
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Glass transition temperature and its relevance in food processing.
    Roos YH
    Annu Rev Food Sci Technol; 2010; 1():469-96. PubMed ID: 22129345
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reprint of "Characterisation and modelling of the thermorheological properties of pharmaceutical polymers and their blends using capillary rheometry: Implications for hot melt processing of dosage forms".
    Jones DS; Margetson DN; McAllister MS; Andrews GP
    Int J Pharm; 2015 Dec; 496(1):86-94. PubMed ID: 26551434
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thermal denaturation of myoglobin in water--disaccharide matrixes: relation with the glass transition of the system.
    Bellavia G; Cottone G; Giuffrida S; Cupane A; Cordone L
    J Phys Chem B; 2009 Aug; 113(33):11543-9. PubMed ID: 19719261
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Specific volume-hole volume correlations in amorphous carbohydrates: effect of temperature, molecular weight, and water content.
    Townrow S; Roussenova M; Giardiello MI; Alam A; Ubbink J
    J Phys Chem B; 2010 Feb; 114(4):1568-78. PubMed ID: 20058888
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Predicting melt rheology for hot-melt extrusion by means of a simple T
    Bochmann ES; Üstüner EE; Gryczke A; Wagner KG
    Eur J Pharm Biopharm; 2017 Oct; 119():47-55. PubMed ID: 28532677
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dynamic oscillation measurements of starch networks at temperatures above 100 degrees C.
    Kasapis S; Sablani SS; Biliaderis CG
    Carbohydr Res; 2000 Oct; 329(1):179-87. PubMed ID: 11086697
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Testing the validity of comparisons between the rheological and the calorimetric glass transition temperatures.
    Kasapis S; Al-Marhoobi IM; Mitchell JR
    Carbohydr Res; 2003 Apr; 338(8):787-94. PubMed ID: 12668099
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Gel formation and low-temperature intramolecular conformation transition of a triple-helical polysaccharide lentinan in water.
    Zhang Y; Xu X; Zhang L
    Biopolymers; 2008 Oct; 89(10):852-61. PubMed ID: 18506809
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A comparative study of texture and rheology of Argentinian honeys from two regions.
    Maldonado GE; Navarro AS; Yamul DK
    J Texture Stud; 2018 Jun; ():. PubMed ID: 29935039
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Viscous solutions, networks and the glass transition in high sugar galactomannan and kappa-carrageenan mixtures.
    Kasapis S; Al-Marhoobi IM; Khan AJ
    Int J Biol Macromol; 2000 Mar; 27(1):13-20. PubMed ID: 10704981
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of cations and anions on glass transition temperatures in excipient solutions.
    Nesarikar VV; Nassar MN
    Pharm Dev Technol; 2007; 12(3):259-64. PubMed ID: 17613889
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of carbamazepine on viscoelastic properties and hot melt extrudability of Soluplus ®.
    Gupta SS; Parikh T; Meena AK; Mahajan N; Vitez I; Serajuddin ATM
    Int J Pharm; 2015 Jan; 478(1):232-239. PubMed ID: 25448585
    [TBL] [Abstract][Full Text] [Related]  

  • 55. On Viscous Flow in Glass-Forming Organic Liquids.
    Ojovan MI
    Molecules; 2020 Sep; 25(17):. PubMed ID: 32899408
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Using Dielectric Relaxation Spectroscopy to Characterize the Glass Transition Time of Polydextrose.
    Buehler MG; Kindle ML; Carter BP
    J Food Sci; 2015 Jun; 80(6):E1243-52. PubMed ID: 25944358
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The question of high- or low-temperature glass transition in frozen fish. Construction of the supplemented state diagram for tuna muscle by differential scanning calorimetry.
    Orlien V; Risbo J; Andersen ML; Skibsted LH
    J Agric Food Chem; 2003 Jan; 51(1):211-7. PubMed ID: 12502410
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Calorimetric and relaxation properties of xylitol-water mixtures.
    Elamin K; Sjöström J; Jansson H; Swenson J
    J Chem Phys; 2012 Mar; 136(10):104508. PubMed ID: 22423849
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluation of glassy-state dynamics from the width of the glass transition: results from theoretical simulation of differential scanning calorimetry and comparisons with experiment.
    Pikal MJ; Chang LL; Tang XC
    J Pharm Sci; 2004 Apr; 93(4):981-94. PubMed ID: 14999734
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An application for impedance spectroscopy in the characterisation of the glass transition during the lyophilization cycle: the example of a 10% w/v maltodextrin solution.
    Smith G; Arshad MS; Polygalov E; Ermolina I
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):1130-40. PubMed ID: 23959072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.