These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

47 related articles for article (PubMed ID: 33288258)

  • 1. Impacts of seasonal variation on volatile fatty acids production of food waste anaerobic fermentation.
    Qin W; Han S; Meng F; Chen K; Gao Y; Li J; Lin L; Hu E; Jiang J
    Sci Total Environ; 2024 Feb; 912():168764. PubMed ID: 38000740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing volatile fatty acid production from sewage sludge in batch fermentation tests.
    Mineo A; Di Leto Y; Cosenza A; Capri FC; Gallo G; Alduina R; Ni BJ; Mannina G
    Chemosphere; 2024 Feb; 349():140859. PubMed ID: 38048828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resilience towards organic load and activated sludge variations in co-fermentation for carboxylic acid production.
    Perez-Esteban N; Vives-Egea J; Dosta J; Astals S; Peces M
    Bioresour Technol; 2024 Jun; 406():131034. PubMed ID: 38925408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Valorization of organic carbon in primary sludge via semi-continuous dark fermentation: First step to establish a wastewater biorefinery.
    Shylaja Prakash N; Maurer P; Horn H; Hille-Reichel A
    Bioresour Technol; 2024 Apr; 397():130467. PubMed ID: 38373504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanisms of pH regulation on promoting volatile fatty acids production from kitchen waste.
    Liu F; Wang T; Feng L; Chen Y
    J Environ Sci (China); 2025 Jan; 147():414-423. PubMed ID: 39003059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel approach of synchronously recovering phosphorus as vivianite and volatile fatty acids during waste activated sludge and food waste co-fermentation: Performance and mechanisms.
    Wu Y; Cao J; Zhang T; Zhao J; Xu R; Zhang Q; Fang F; Luo J
    Bioresour Technol; 2020 Jun; 305():123078. PubMed ID: 32135351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of yeast inoculation methods on caproic acid production and microbial community during anaerobic fermentation of Chinese cabbage waste.
    Chen R; Zhou X; Huang L; Ji X; Chen Z; Zhu J
    J Environ Manage; 2024 Apr; 356():120632. PubMed ID: 38531129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lactic acid fermentation of food waste in a semicontinuous SBR system: influence of the influent composition and hydraulic retention time.
    Pau S; Tan LC; Arriaga S; Lens PNL
    Environ Technol; 2024 Jun; 45(15):2993-3003. PubMed ID: 37272689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrogenerated singlet oxygen and reactive chlorine species enhancing volatile fatty acids production from co-fermentation of waste activated sludge and food waste: The key role of metal oxide coated electrodes.
    Lin Q; Xi S; Cheng B; Jiang J; Zan F; Tang Y; Li Y; Khanal SK; Wang Z; Chen G; Guo G
    Water Res; 2024 Jun; 260():121953. PubMed ID: 38901317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced lactic acid production from household food waste under hyperthermophilic conditions: Mechanisms and regulation.
    Song L; Cai C; Lin C; Lv Y; Liu Y; Ye X; Liu M; Dai X
    Waste Manag; 2024 Apr; 178():57-65. PubMed ID: 38377769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lactic acid production with two types of feedstocks from food waste: Effect of inoculum, temperature, micro-oxygen, and initial pH.
    Cao Q; Zhang W; Yin F; Lian T; Wang S; Zhou T; Wei X; Zhang F; Cao T; Dong H
    Waste Manag; 2024 Jul; 185():25-32. PubMed ID: 38820781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic pre-treatment for enhancement of primary sludge fermentation.
    Bahreini G; Nazari L; Ho D; Flannery CC; Elbeshbishy E; Santoro D; Nakhla G
    Bioresour Technol; 2020 Jun; 305():123071. PubMed ID: 32114298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen production promotion and energy saving in anaerobic co-fermentation of heat-treated sludge and food waste.
    Zhang Y; Ni JQ; Liu C; Ke Y; Zheng Y; Zhen G; Xie S
    Environ Sci Pollut Res Int; 2024 Feb; 31(10):14831-14844. PubMed ID: 38285252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Food Waste Biorefinery: Pathway towards Circular Bioeconomy.
    Tsegaye B; Jaiswal S; Jaiswal AK
    Foods; 2021 May; 10(6):. PubMed ID: 34073698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the potential of waste activated sludge and food waste co-fermentation for carboxylic acids production.
    Vidal-Antich C; Perez-Esteban N; Astals S; Peces M; Mata-Alvarez J; Dosta J
    Sci Total Environ; 2021 Feb; 757():143763. PubMed ID: 33288258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-driven carboxylic acid production from waste activated sludge and food waste: Co-fermentation performance and microbial dynamics.
    Perez-Esteban N; Vives-Egea J; Peces M; Dosta J; Astals S
    Waste Manag; 2024 Apr; 178():176-185. PubMed ID: 38401431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of food waste composition on acidogenic co-fermentation with waste activated sludge.
    Vidal-Antich C; Peces M; Perez-Esteban N; Mata-Alvarez J; Dosta J; Astals S
    Sci Total Environ; 2022 Nov; 849():157920. PubMed ID: 35952870
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.