These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 3328835)

  • 21. Animal models of spinal cord contusion injuries.
    Khan T; Havey RM; Sayers ST; Patwardhan A; King WW
    Lab Anim Sci; 1999 Apr; 49(2):161-72. PubMed ID: 10331546
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Post-spinal cord injury astrocyte-mediated functional recovery in rats after intraspinal injection of the recombinant adenoviral vectors Ad5-VEGF and Ad5-ANG.
    Povysheva T; Shmarov M; Logunov D; Naroditsky B; Shulman I; Ogurcov S; Kolesnikov P; Islamov R; Chelyshev Y
    J Neurosurg Spine; 2017 Jul; 27(1):105-115. PubMed ID: 28452633
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Clip compression model is useful for thoracic spinal cord injuries: histologic and functional correlates.
    Poon PC; Gupta D; Shoichet MS; Tator CH
    Spine (Phila Pa 1976); 2007 Dec; 32(25):2853-9. PubMed ID: 18246008
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A behavioral and anatomical analysis of spinal cord injury produced by a feedback-controlled impaction device.
    Bresnahan JC; Beattie MS; Todd FD; Noyes DH
    Exp Neurol; 1987 Mar; 95(3):548-70. PubMed ID: 3817079
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Behavioral and anatomical consequences of repetitive mild thoracic spinal cord contusion injury in the rat.
    Jin Y; Bouyer J; Haas C; Fischer I
    Exp Neurol; 2014 Jul; 257():57-69. PubMed ID: 24786492
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Behavioral and histological characterization of unilateral cervical spinal cord contusion injury in rats.
    Gensel JC; Tovar CA; Hamers FP; Deibert RJ; Beattie MS; Bresnahan JC
    J Neurotrauma; 2006 Jan; 23(1):36-54. PubMed ID: 16430371
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Graded unilateral cervical spinal cord injury in the rat: evaluation of forelimb recovery and histological effects.
    Soblosky JS; Song JH; Dinh DH
    Behav Brain Res; 2001 Feb; 119(1):1-13. PubMed ID: 11164520
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Blockade of sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury.
    Kaptanoglu E; Solaroglu I; Surucu HS; Akbiyik F; Beskonakli E
    Acta Neurochir (Wien); 2005 Apr; 147(4):405-12; discussion 412. PubMed ID: 15696267
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A reproducible spinal cord injury model in the cat.
    Ford RW
    J Neurosurg; 1983 Aug; 59(2):268-75. PubMed ID: 6864294
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Changes in spinal cord injury-induced gene expression in rat are strain-dependent.
    Schmitt C; Miranpuri GS; Dhodda VK; Isaacson J; Vemuganti R; Resnick DK
    Spine J; 2006; 6(2):113-9. PubMed ID: 16517380
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spinal cord injury in the rat: treatment with bacterial lipopolysaccharide and indomethacin enhances cellular repair and locomotor function.
    Guth L; Zhang Z; DiProspero NA; Joubin K; Fitch MT
    Exp Neurol; 1994 Mar; 126(1):76-87. PubMed ID: 8157128
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comparison of the behavioral and anatomical outcomes in sub-acute and chronic spinal cord injury models following treatment with human mesenchymal precursor cell transplantation and recombinant decorin.
    Hodgetts SI; Simmons PJ; Plant GW
    Exp Neurol; 2013 Oct; 248():343-59. PubMed ID: 23867131
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Local spinal cord glucose utilization and extracellular potassium activity changes after spinal cord injury in rats].
    Murai H; Itoh C; Wagai N; Nakamura T; Yamaura A; Makino H
    No To Shinkei; 1991 Apr; 43(4):337-42. PubMed ID: 1888573
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Time-level relationship for nitric oxide and the protective effects of aminoguanidine in experimental spinal cord injury.
    Soy O; Aslan O; Uzun H; Barut S; Iğdem AA; Belce A; Colak A
    Acta Neurochir (Wien); 2004 Dec; 146(12):1329-35; discussion 1335-6. PubMed ID: 15309585
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessment of spinal cord pathology following trauma using early changes in the spinal cord evoked potentials: a pharmacological and morphological study in the rat.
    Sharma HS; Winkler T
    Muscle Nerve Suppl; 2002; 11():S83-91. PubMed ID: 12116291
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neuroprotective effects and impact on caspase-12 expression of tauroursodeoxycholic acid after acute spinal cord injury in rats.
    Dong Y; Miao L; Hei L; Lin L; Ding H
    Int J Clin Exp Pathol; 2015; 8(12):15871-8. PubMed ID: 26884858
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spinal cord contusion in the rat: behavioral analysis of functional neurologic impairment.
    Gale K; Kerasidis H; Wrathall JR
    Exp Neurol; 1985 Apr; 88(1):123-34. PubMed ID: 3979506
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Progesterone is neuroprotective after acute experimental spinal cord trauma in rats.
    Thomas AJ; Nockels RP; Pan HQ; Shaffrey CI; Chopp M
    Spine (Phila Pa 1976); 1999 Oct; 24(20):2134-8. PubMed ID: 10543012
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A mouse model of graded contusive spinal cord injury.
    Kuhn PL; Wrathall JR
    J Neurotrauma; 1998 Feb; 15(2):125-40. PubMed ID: 9512088
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spinal cord injury produced by consistent mechanical displacement of the cord in rats: behavioral and histologic analysis.
    Behrmann DL; Bresnahan JC; Beattie MS; Shah BR
    J Neurotrauma; 1992; 9(3):197-217. PubMed ID: 1474608
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.