These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 33288382)

  • 1. Impact of Instructed Laryngeal Manipulation on Acoustic Measures of Voice-Preliminary Results.
    Madill C; Nguyen DD
    J Voice; 2023 Jan; 37(1):143.e1-143.e11. PubMed ID: 33288382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differentiated vocal tract control and the reliability of interpretations of nasendoscopic assessment.
    Madill C; Sheard C; Heard R
    J Voice; 2010 May; 24(3):337-45. PubMed ID: 19660904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auditory-perceptual Parameters as Predictors of Voice Acoustic Measures.
    Nguyen DD; Madill C
    J Voice; 2023 Mar; ():. PubMed ID: 37003863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voice disorder discrimination using vowel acoustic measures in female speakers.
    Nguyen DD; Novakovic D; Madill C
    Int J Lang Commun Disord; 2024 Jun; ():. PubMed ID: 38884559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy of Acoustic Analysis Measurements in the Evaluation of Patients With Different Laryngeal Diagnoses.
    Lopes LW; Batista Simões L; Delfino da Silva J; da Silva Evangelista D; da Nóbrega E Ugulino AC; Oliveira Costa Silva P; Jefferson Dias Vieira V
    J Voice; 2017 May; 31(3):382.e15-382.e26. PubMed ID: 27742492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the cepstral acoustic characteristics of voice in healthy children.
    Demirci AN; Köse A; Aydinli FE; İncebay Ö; Yilmaz T
    Int J Pediatr Otorhinolaryngol; 2021 Sep; 148():110815. PubMed ID: 34217000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Fundamental Frequency, Vocal Intensity, Sample Duration, and Vowel Context in Cepstral and Spectral Measures of Dysphonic Voices.
    Sampaio M; Vaz Masson ML; de Paula Soares MF; Bohlender JE; Brockmann-Bauser M
    J Speech Lang Hear Res; 2020 May; 63(5):1326-1339. PubMed ID: 32348195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences and Reliability of Linear and Nonlinear Acoustic Measures as a Function of Vocal Intensity in Individuals With Voice Disorders.
    de Oliveira Florencio V; Almeida AA; Balata P; Nascimento S; Brockmann-Bauser M; Lopes LW
    J Voice; 2023 Sep; 37(5):663-681. PubMed ID: 34116889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relation of perceived breathiness to laryngeal kinematics and acoustic measures based on computational modeling.
    Samlan RA; Story BH; Bunton K
    J Speech Lang Hear Res; 2013 Aug; 56(4):1209-23. PubMed ID: 23785184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Speech Characteristics on Electroglottographic and Instrumental Acoustic Voice Analysis Metrics in Women With Structural Dysphonia Before and After Treatment.
    Iob NA; He L; Ternström S; Cai H; Brockmann-Bauser M
    J Speech Lang Hear Res; 2024 Jun; 67(6):1660-1681. PubMed ID: 38758676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Acoustic Analyses of Voice in Nonoptimized Conditions.
    van der Woerd B; Wu M; Parsa V; Doyle PC; Fung K
    J Speech Lang Hear Res; 2020 Dec; 63(12):3991-3999. PubMed ID: 33186510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voice Acoustic Analysis of Pediatric Vocal Nodule Patients Using Ratios Calculated With Biomedical Image Segmentation.
    Bilal N; Selcuk T; Sarica S; Alkan A; Orhan İ; Doganer A; Sagiroglu S; Kılıc MA
    J Voice; 2019 Mar; 33(2):195-203. PubMed ID: 29273231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Impact of Nasalance on Cepstral Peak Prominence and Harmonics-to-Noise Ratio.
    Madill C; Nguyen DD; Yick-Ning Cham K; Novakovic D; McCabe P
    Laryngoscope; 2019 Aug; 129(8):E299-E304. PubMed ID: 30585334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cepstral and Perceptual Investigations in Female Teachers With Functionally Healthy Voice.
    Phadke KV; Laukkanen AM; Ilomäki I; Kankare E; Geneid A; Švec JG
    J Voice; 2020 May; 34(3):485.e33-485.e43. PubMed ID: 30342798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic and perceptual effects of left-right laryngeal asymmetries based on computational modeling.
    Samlan RA; Story BH; Lotto AJ; Bunton K
    J Speech Lang Hear Res; 2014 Oct; 57(5):1619-37. PubMed ID: 24845730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does the Combination of Glottal and Supraglottic Acoustic Measures Improve Discrimination Between Women With and Without Voice Disorders?
    Lopes LW; França FP; Evangelista DDS; Alves JDN; Vieira VJD; de Lima-Silva MFB; Pernambuco LA
    J Voice; 2022 Jul; 36(4):583.e17-583.e29. PubMed ID: 32917459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerodynamic and acoustic features of vocal effort.
    Rosenthal AL; Lowell SY; Colton RH
    J Voice; 2014 Mar; 28(2):144-53. PubMed ID: 24412040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Interaction of Surface Hydration and Vocal Loading on Voice Measures.
    Fujiki RB; Chapleau A; Sundarrajan A; McKenna V; Sivasankar MP
    J Voice; 2017 Mar; 31(2):211-217. PubMed ID: 27522343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cepstral analysis of hypokinetic and ataxic voices: correlations with perceptual and other acoustic measures.
    Jannetts S; Lowit A
    J Voice; 2014 Nov; 28(6):673-80. PubMed ID: 24836365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Vocal Intensity and Fundamental Frequency on Cepstral Peak Prominence in Patients with Voice Disorders and Vocally Healthy Controls.
    Brockmann-Bauser M; Van Stan JH; Carvalho Sampaio M; Bohlender JE; Hillman RE; Mehta DD
    J Voice; 2021 May; 35(3):411-417. PubMed ID: 31859213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.