BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 33288716)

  • 1. Direct visualization of translational GTPase factor pool formed around the archaeal ribosomal P-stalk by high-speed AFM.
    Imai H; Uchiumi T; Kodera N
    Proc Natl Acad Sci U S A; 2020 Dec; 117(51):32386-32394. PubMed ID: 33288716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding of translation elongation factors to individual copies of the archaeal ribosomal stalk protein aP1 assembled onto aP0.
    Honda T; Imai H; Suzuki T; Miyoshi T; Ito K; Uchiumi T
    Biochem Biophys Res Commun; 2017 Jan; 483(1):153-158. PubMed ID: 28042029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Archaeal ribosomal stalk protein interacts with translation factors in a nucleotide-independent manner via its conserved C terminus.
    Nomura N; Honda T; Baba K; Naganuma T; Tanzawa T; Arisaka F; Noda M; Uchiyama S; Tanaka I; Yao M; Uchiumi T
    Proc Natl Acad Sci U S A; 2012 Mar; 109(10):3748-53. PubMed ID: 22355137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Switch of the interactions between the ribosomal stalk and EF1A in the GTP- and GDP-bound conformations.
    Maruyama K; Imai H; Kawamura M; Ishino S; Ishino Y; Ito K; Uchiumi T
    Sci Rep; 2019 Oct; 9(1):14761. PubMed ID: 31611569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular insights into the interaction of the ribosomal stalk protein with elongation factor 1α.
    Ito K; Honda T; Suzuki T; Miyoshi T; Murakami R; Yao M; Uchiumi T
    Nucleic Acids Res; 2014 Dec; 42(22):14042-52. PubMed ID: 25428348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional role of the C-terminal tail of the archaeal ribosomal stalk in recruitment of two elongation factors to the sarcin/ricin loop of 23S rRNA.
    Imai H; Miyoshi T; Murakami R; Ito K; Ishino Y; Uchiumi T
    Genes Cells; 2015 Jul; 20(7):613-24. PubMed ID: 26033302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The C-terminal helix of ribosomal P stalk recognizes a hydrophobic groove of elongation factor 2 in a novel fashion.
    Tanzawa T; Kato K; Girodat D; Ose T; Kumakura Y; Wieden HJ; Uchiumi T; Tanaka I; Yao M
    Nucleic Acids Res; 2018 Apr; 46(6):3232-3244. PubMed ID: 29471537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural insights into the Switching Off of the Interaction between the Archaeal Ribosomal Stalk and aEF1A by Nucleotide Exchange Factor aEF1B.
    Suzuki T; Ito K; Miyoshi T; Murakami R; Uchiumi T
    J Mol Biol; 2021 Jul; 433(15):167046. PubMed ID: 33971210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Interaction between the Ribosomal Stalk Proteins and Translation Initiation Factor 5B Promotes Translation Initiation.
    Murakami R; Singh CR; Morris J; Tang L; Harmon I; Takasu A; Miyoshi T; Ito K; Asano K; Uchiumi T
    Mol Cell Biol; 2018 Aug; 38(16):. PubMed ID: 29844065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ribosomal stalk protein is crucial for the action of the conserved ATPase ABCE1.
    Imai H; Abe T; Miyoshi T; Nishikawa SI; Ito K; Uchiumi T
    Nucleic Acids Res; 2018 Sep; 46(15):7820-7830. PubMed ID: 30010948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [GTPases of translational apparatus].
    Kubarenko AV; Sergiev PV; Rodnina MV
    Mol Biol (Mosk); 2005; 39(5):746-61. PubMed ID: 16240709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and function of the acidic ribosomal stalk proteins.
    Wahl MC; Möller W
    Curr Protein Pept Sci; 2002 Feb; 3(1):93-106. PubMed ID: 12370014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for translation factor recruitment to the eukaryotic/archaeal ribosomes.
    Naganuma T; Nomura N; Yao M; Mochizuki M; Uchiumi T; Tanaka I
    J Biol Chem; 2010 Feb; 285(7):4747-56. PubMed ID: 20007716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mode of assembly of P0, P1, and P2 proteins at the GTPase-associated center in animal ribosome: in vitro analyses with P0 truncation mutants.
    Hagiya A; Naganuma T; Maki Y; Ohta J; Tohkairin Y; Shimizu T; Nomura T; Hachimori A; Uchiumi T
    J Biol Chem; 2005 Nov; 280(47):39193-9. PubMed ID: 16188884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro reconstitution of the GTPase-associated centre of the archaebacterial ribosome: the functional features observed in a hybrid form with Escherichia coli 50S subunits.
    Nomura T; Nakano K; Maki Y; Naganuma T; Nakashima T; Tanaka I; Kimura M; Hachimori A; Uchiumi T
    Biochem J; 2006 Jun; 396(3):565-71. PubMed ID: 16594895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome.
    Rodnina MV; Savelsbergh A; Katunin VI; Wintermeyer W
    Nature; 1997 Jan; 385(6611):37-41. PubMed ID: 8985244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the ribosomal properties required for formation of a GTPase active complex with the eukaryotic elongation factor 2.
    Nygård O; Nilsson L
    Eur J Biochem; 1989 Feb; 179(3):603-8. PubMed ID: 2537725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for the function of the ribosomal L7/12 stalk in factor binding and GTPase activation.
    Diaconu M; Kothe U; Schlünzen F; Fischer N; Harms JM; Tonevitsky AG; Stark H; Rodnina MV; Wahl MC
    Cell; 2005 Jul; 121(7):991-1004. PubMed ID: 15989950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translation elongation factor-3 (EF-3): an evolving eukaryotic ribosomal protein?
    Belfield GP; Ross-Smith NJ; Tuite MF
    J Mol Evol; 1995 Sep; 41(3):376-87. PubMed ID: 7563124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity of the 30-S CsCl core in elongation-factor-dependent GTP hydrolysis.
    Sander G; Marsh RC; Parmeggiani A
    Eur J Biochem; 1976 Jan; 61(1):317-23. PubMed ID: 173554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.