These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 33288716)

  • 21. Synthesis of guanosine 5'-di- and -triphosphate derivatives with modified terminal phosphates: effect on ribosome-elongation factor G-dependent reactions.
    Eckstein F; Bruns W; Parmeggiani A
    Biochemistry; 1975 Nov; 14(23):5225-32. PubMed ID: 1103967
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiplication of Ribosomal P-Stalk Proteins Contributes to the Fidelity of Translation.
    Wawiórka L; Molestak E; Szajwaj M; Michalec-Wawiórka B; Mołoń M; Borkiewicz L; Grela P; Boguszewska A; Tchórzewski M
    Mol Cell Biol; 2017 Sep; 37(17):. PubMed ID: 28606931
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three-dimensional structure of the ribosomal translocase: elongation factor G from Thermus thermophilus.
    AEvarsson A; Brazhnikov E; Garber M; Zheltonosova J; Chirgadze Y; al-Karadaghi S; Svensson LA; Liljas A
    EMBO J; 1994 Aug; 13(16):3669-77. PubMed ID: 8070397
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The enigmatic ribosomal stalk.
    Liljas A; Sanyal S
    Q Rev Biophys; 2018 Jan; 51():e12. PubMed ID: 30912488
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of guanosine 5'-triphosphate in polypeptide chain elongation.
    Kaziro Y
    Biochim Biophys Acta; 1978 Sep; 505(1):95-127. PubMed ID: 361078
    [No Abstract]   [Full Text] [Related]  

  • 26. Effects of antibiotics, N-acetylaminoacyl-tRNA and other agents on the elongation-factor-Tu dependent and ribosome-dependent GTP hydrolysis promoted by 2'(3')-O-L-phenylalanyladenosine.
    Campuzano S; Modolell J
    Eur J Biochem; 1981 Jun; 117(1):27-31. PubMed ID: 6114863
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toward a model for the interaction between elongation factor Tu and the ribosome.
    Weijland A; Parmeggiani A
    Science; 1993 Feb; 259(5099):1311-4. PubMed ID: 8446899
    [TBL] [Abstract][Full Text] [Related]  

  • 28. GTPase activation of elongation factors Tu and G on the ribosome.
    Mohr D; Wintermeyer W; Rodnina MV
    Biochemistry; 2002 Oct; 41(41):12520-8. PubMed ID: 12369843
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assembling the archaeal ribosome: roles for translation-factor-related GTPases.
    Blombach F; Brouns SJ; van der Oost J
    Biochem Soc Trans; 2011 Jan; 39(1):45-50. PubMed ID: 21265745
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enacyloxin IIa, an inhibitor of protein biosynthesis that acts on elongation factor Tu and the ribosome.
    Cetin R; Krab IM; Anborgh PH; Cool RH; Watanabe T; Sugiyama T; Izaki K; Parmeggiani A
    EMBO J; 1996 May; 15(10):2604-11. PubMed ID: 8665868
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Stoichiometry of GTP hydrolysis during peptide synthesis on the ribosome. GTP hydrolysis uncoupled with ribosomal peptide synthesis and dependent on preparation of elongation factor T].
    Smailov SK; Kakhniashvili DG; Gavrilova LP
    Biokhimiia; 1982 Oct; 47(10):1747-51. PubMed ID: 6129003
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering and characterization of the ribosomal L10.L12 stalk complex. A structural element responsible for high turnover of the elongation factor G-dependent GTPase.
    Miyoshi T; Nomura T; Uchiumi T
    J Biol Chem; 2009 Jan; 284(1):85-92. PubMed ID: 18936095
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of the uncoupled GTPase activity of elongation factor G (EF-G) by the conformations of the ribosomal subunits.
    Nagel K; Voigt J
    Biochim Biophys Acta; 1993 Aug; 1174(2):153-61. PubMed ID: 8357832
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure of the GTP Form of Elongation Factor 4 (EF4) Bound to the Ribosome.
    Kumar V; Ero R; Ahmed T; Goh KJ; Zhan Y; Bhushan S; Gao YG
    J Biol Chem; 2016 Jun; 291(25):12943-50. PubMed ID: 27137929
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure of a two-domain N-terminal fragment of ribosomal protein L10 from Methanococcus jannaschii reveals a specific piece of the archaeal ribosomal stalk.
    Kravchenko O; Mitroshin I; Nikonov S; Piendl W; Garber M
    J Mol Biol; 2010 Jun; 399(2):214-20. PubMed ID: 20399793
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure of the ribosomal P stalk base in archaean Methanococcus jannaschii.
    Gabdulkhakov A; Mitroshin I; Garber M
    J Struct Biol; 2020 Sep; 211(3):107559. PubMed ID: 32653645
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dimer state of protein L7/L12 and EF-G-dependent reactions of ribosomes.
    Koteliansky VE; Domogatsky SP; Gudkov AT
    Eur J Biochem; 1978 Oct; 90(2):319-23. PubMed ID: 361401
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reduced turnover of the elongation factor EF-1 X ribosome complex after treatment with the protein synthesis inhibitor II from barley seeds.
    Nilsson L; Asano K; Svensson B; Poulsen FM; Nygård O
    Biochim Biophys Acta; 1986 Oct; 868(1):62-70. PubMed ID: 3756169
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural basis for the transition from translation initiation to elongation by an 80S-eIF5B complex.
    Wang J; Wang J; Shin BS; Kim JR; Dever TE; Puglisi JD; Fernández IS
    Nat Commun; 2020 Oct; 11(1):5003. PubMed ID: 33024099
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein synthesis. An elongation factor turn-on.
    Nierhaus KH
    Nature; 1996 Feb; 379(6565):491-2. PubMed ID: 8596624
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.