BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 33288864)

  • 1. Author Correction: Investigating effect of climate warming on the population declines of Sympetrum frequens during the 1990s in three regions in Japan.
    Nakanishi K; Koide D; Yokomizo H; Kadoya T; Hayashi TI
    Sci Rep; 2020 Dec; 10(1):21362. PubMed ID: 33288864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating effect of climate warming on the population declines of Sympetrum frequens during the 1990s in three regions in Japan.
    Nakanishi K; Koide D; Yokomizo H; Kadoya T; Hayashi TI
    Sci Rep; 2020 Jul; 10(1):12719. PubMed ID: 32728123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Were the sharp declines of dragonfly populations in the 1990s in Japan caused by fipronil and imidacloprid? An analysis of Hill's causality for the case of Sympetrum frequens.
    Nakanishi K; Yokomizo H; Hayashi TI
    Environ Sci Pollut Res Int; 2018 Dec; 25(35):35352-35364. PubMed ID: 30343370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Population model analyses of the combined effects of insecticide use and habitat degradation on the past sharp declines of the dragonfly Sympetrum frequens.
    Nakanishi K; Yokomizo H; Hayashi TI
    Sci Total Environ; 2021 Sep; 787():147526. PubMed ID: 34000531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Author Correction: Subsurface ocean flywheel of coupled climate variability in the Barents Sea hotspot of global warming.
    Schlichtholz P
    Sci Rep; 2020 Mar; 10(1):4732. PubMed ID: 32152412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of systemic insecticides on the population dynamics of the dragonfly Sympetrum frequens in Japan: Statistical analyses using field census data from 2009 to 2016.
    Nakanishi K; Uéda T; Yokomizo H; Hayashi TI
    Sci Total Environ; 2020 Feb; 703():134499. PubMed ID: 31767298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Author Correction: Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming.
    Büntgen U; Krusic PJ; Piermattei A; Coomes DA; Esper J; Myglan VS; Kirdyanov AV; Camarero JJ; Crivellaro A; Körner C
    Nat Commun; 2019 Jun; 10(1):2660. PubMed ID: 31209214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Author Correction: Global vulnerability of marine mammals to global warming.
    Albouy C; Delattre V; Donati G; Frölicher TL; Albouy-Boyer S; Rufino M; Pellissier L; Mouillot D; Leprieur F
    Sci Rep; 2020 Mar; 10(1):4257. PubMed ID: 32123294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Author Correction: Soil carbon loss by experimental warming in a tropical forest.
    Nottingham AT; Meir P; Velasquez E; Turner BL
    Nature; 2020 Oct; 586(7831):E32. PubMed ID: 33046844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Author Correction: Global warming hiatus contributed weakening of the Mascarene High in the Southern Indian Ocean.
    P J V; Ravichandran M; Subeesh MP; Chatterjee S; M N
    Sci Rep; 2020 Mar; 10(1):5670. PubMed ID: 32205849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Author Correction: Declines in mental health associated with air pollution and temperature variability in China.
    Xue T; Zhu T; Zheng Y; Zhang Q
    Nat Commun; 2019 Aug; 10(1):3609. PubMed ID: 31383856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Author Correction: The future of extreme climate in Iran.
    Vaghefi SA; Keykhai M; Jahanbakhshi F; Sheikholeslami J; Ahmadi A; Yang H; Abbaspour KC
    Sci Rep; 2019 Nov; 9(1):17420. PubMed ID: 31745189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Author Correction: Locally-adapted reproductive photoperiodism determines population vulnerability to climate change in burying beetles.
    Tsai HY; Rubenstein DR; Fan YM; Yuan TN; Chen BF; Tang Y; Chen IC; Shen SF
    Nat Commun; 2020 Jul; 11(1):3754. PubMed ID: 32699234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Author Correction: Emergence of unprecedented climate change in projected future precipitation.
    Kusunoki S; Ose T; Hosaka M
    Sci Rep; 2020 Apr; 10(1):7454. PubMed ID: 32350339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Author Correction: Effect of diversity on growth, mortality, and loss of resilience to extreme climate events in a tropical planted forest experiment.
    Hutchison C; Gravel D; Guichard F; Potvin C
    Sci Rep; 2019 Nov; 9(1):17712. PubMed ID: 31758006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Author Correction: Estimating and tracking the remaining carbon budget for stringent climate targets.
    Rogelj J; Forster PM; Kriegler E; Smith CJ; Séférian R
    Nature; 2020 Apr; 580(7802):E4. PubMed ID: 32269337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Author Correction: Climate change, range shifts, and the disruption of a pollinator-plant complex.
    Gómez-Ruiz EP; Lacher TE
    Sci Rep; 2019 Nov; 9(1):17503. PubMed ID: 31745172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Author Correction: A simulated Northern Hemisphere terrestrial climate dataset for the past 60,000 years.
    Armstrong E; Hopcroft PO; Valdes PJ
    Sci Data; 2020 Mar; 7(1):91. PubMed ID: 32157093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Author Correction: Climate change impact on flood and extreme precipitation increases with water availability.
    Tabari H
    Sci Rep; 2020 Oct; 10(1):16969. PubMed ID: 33028935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Author Correction: Discrepancy in scientific authority and media visibility of climate change scientists and contrarians.
    Petersen AM; Vincent EM; Westerling AL
    Nat Commun; 2019 Aug; 10(1):3966. PubMed ID: 31467289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.