These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 33288973)
21. Application of a time-fractal fractional derivative with a power-law kernel to the Burke-Shaw system based on Newton's interpolation polynomials. Almutairi N; Saber S MethodsX; 2024 Jun; 12():102510. PubMed ID: 38223217 [TBL] [Abstract][Full Text] [Related]
22. Mathematical assessment of monkeypox disease with the impact of vaccination using a fractional epidemiological modeling approach. Liu B; Farid S; Ullah S; Altanji M; Nawaz R; Wondimagegnhu Teklu S Sci Rep; 2023 Aug; 13(1):13550. PubMed ID: 37599330 [TBL] [Abstract][Full Text] [Related]
23. A caputo fractional order epidemic model for evaluating the effectiveness of high-risk quarantine and vaccination strategies on the spread of COVID-19. Olayiwola MO; Alaje AI; Olarewaju AY; Adedokun KA Healthc Anal (N Y); 2023 Nov; 3():100179. PubMed ID: 37101804 [TBL] [Abstract][Full Text] [Related]
24. A fractional-order mathematical model for analyzing the pandemic trend of COVID-19. Agarwal P; Ramadan MA; Rageh AAM; Hadhoud AR Math Methods Appl Sci; 2022 May; 45(8):4625-4642. PubMed ID: 35464830 [TBL] [Abstract][Full Text] [Related]
25. Modeling the epidemic control measures in overcoming COVID-19 outbreaks: A fractional-order derivative approach. Ullah MS; Higazy M; Ariful Kabir KM Chaos Solitons Fractals; 2022 Feb; 155():111636. PubMed ID: 34866811 [TBL] [Abstract][Full Text] [Related]
26. A delayed plant disease model with Caputo fractional derivatives. Kumar P; Baleanu D; Erturk VS; Inc M; Govindaraj V Adv Contin Discret Model; 2022; 2022(1):11. PubMed ID: 35450199 [TBL] [Abstract][Full Text] [Related]
27. Forecasting of COVID-19 pandemic: From integer derivatives to fractional derivatives. Nabi KN; Abboubakar H; Kumar P Chaos Solitons Fractals; 2020 Dec; 141():110283. PubMed ID: 32982078 [TBL] [Abstract][Full Text] [Related]
28. On a comprehensive model of the novel coronavirus (COVID-19) under Mittag-Leffler derivative. Abdo MS; Shah K; Wahash HA; Panchal SK Chaos Solitons Fractals; 2020 Jun; 135():109867. PubMed ID: 32390692 [TBL] [Abstract][Full Text] [Related]
29. A fractional order SITR mathematical model for forecasting of transmission of COVID-19 of India with lockdown effect. Askar SS; Ghosh D; Santra PK; Elsadany AA; Mahapatra GS Results Phys; 2021 May; 24():104067. PubMed ID: 33777667 [TBL] [Abstract][Full Text] [Related]
30. A global report on the dynamics of COVID-19 with quarantine and hospitalization: A fractional order model with non-local kernel. Ahmad Z; El-Kafrawy SA; Alandijany TA; Giannino F; Mirza AA; El-Daly MM; Faizo AA; Bajrai LH; Kamal MA; Azhar EI Comput Biol Chem; 2022 Jun; 98():107645. PubMed ID: 35276575 [TBL] [Abstract][Full Text] [Related]
31. Global dynamics of a fractional order model for the transmission of HIV epidemic with optimal control. Naik PA; Zu J; Owolabi KM Chaos Solitons Fractals; 2020 Sep; 138():109826. PubMed ID: 32572309 [TBL] [Abstract][Full Text] [Related]
32. Modeling, analysis and prediction of new variants of covid-19 and dengue co-infection on complex network. Rehman AU; Singh R; Agarwal P Chaos Solitons Fractals; 2021 Sep; 150():111008. PubMed ID: 33967409 [TBL] [Abstract][Full Text] [Related]
33. A new fuzzy fractional order model of transmission of Covid-19 with quarantine class. Hanif A; Butt AIK; Ahmad S; Din RU; Inc M Eur Phys J Plus; 2021; 136(11):1179. PubMed ID: 34849324 [TBL] [Abstract][Full Text] [Related]
34. Modeling and simulation of the novel coronavirus in Caputo derivative. Awais M; Alshammari FS; Ullah S; Khan MA; Islam S Results Phys; 2020 Dec; 19():103588. PubMed ID: 33224721 [TBL] [Abstract][Full Text] [Related]
35. Modeling and analysis of COVID-19 epidemics with treatment in fractional derivatives using real data from Pakistan. Naik PA; Yavuz M; Qureshi S; Zu J; Townley S Eur Phys J Plus; 2020; 135(10):795. PubMed ID: 33145145 [TBL] [Abstract][Full Text] [Related]
36. Study of transmission dynamics of COVID-19 mathematical model under ABC fractional order derivative. Thabet STM; Abdo MS; Shah K; Abdeljawad T Results Phys; 2020 Dec; 19():103507. PubMed ID: 33072498 [TBL] [Abstract][Full Text] [Related]
37. Mathematical analysis of a stochastic model for spread of Coronavirus. Babaei A; Jafari H; Banihashemi S; Ahmadi M Chaos Solitons Fractals; 2021 Apr; 145():110788. PubMed ID: 33642704 [TBL] [Abstract][Full Text] [Related]
38. On a new conceptual mathematical model dealing the current novel coronavirus-19 infectious disease. Din A; Shah K; Seadawy A; Alrabaiah H; Baleanu D Results Phys; 2020 Dec; 19():103510. PubMed ID: 33520616 [TBL] [Abstract][Full Text] [Related]
39. Dynamics of fractional order COVID-19 model with a case study of Saudi Arabia. Chu YM; Ali A; Khan MA; Islam S; Ullah S Results Phys; 2021 Feb; 21():103787. PubMed ID: 33552881 [TBL] [Abstract][Full Text] [Related]
40. Stability analysis and simulation of the novel Corornavirus mathematical model via the Caputo fractional-order derivative: A case study of Algeria. Moussa YEH; Boudaoui A; Ullah S; Bozkurt F; Abdeljawad T; Alqudah MA Results Phys; 2021 Jul; 26():104324. PubMed ID: 34055583 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]