BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 33289060)

  • 1. Microdistribution of Magnetic Resonance Imaging Contrast Agents in Atherosclerotic Plaques Determined by LA-ICP-MS and SR-μXRF Imaging.
    Uca YO; Hallmann D; Hesse B; Seim C; Stolzenburg N; Pietsch H; Schnorr J; Taupitz M
    Mol Imaging Biol; 2021 Jun; 23(3):382-393. PubMed ID: 33289060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LA-ICP-MS Allows Quantitative Microscopy of Europium-Doped Iron Oxide Nanoparticles and is a Possible Alternative to Ambiguous Prussian Blue Iron Staining.
    Scharlach C; Müller L; Wagner S; Kobayashi Y; Kratz H; Ebert M; Jakubowski N; Schellenberger E
    J Biomed Nanotechnol; 2016 May; 12(5):1001-10. PubMed ID: 27305821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contrast-enhanced MR imaging of atherosclerosis using citrate-coated superparamagnetic iron oxide nanoparticles: calcifying microvesicles as imaging target for plaque characterization.
    Wagner S; Schnorr J; Ludwig A; Stangl V; Ebert M; Hamm B; Taupitz M
    Int J Nanomedicine; 2013; 8():767-79. PubMed ID: 23450179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macrophage uptake switches on OCT contrast of superparamagnetic nanoparticles for imaging of atherosclerotic plaques.
    Ariza de Schellenberger A; Poller WC; Stangl V; Landmesser U; Schellenberger E
    Int J Nanomedicine; 2018; 13():7905-7913. PubMed ID: 30538467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accumulation of Iron Oxide-Based Contrast Agents in Rabbit Atherosclerotic Plaques in Relation to Plaque Age and Vulnerability Features.
    Sekita A; Unterweger H; Berg S; Ohlmeyer S; Bäuerle T; Zheng KH; Coolen BF; Nederveen AJ; Cabella C; Rossi S; Stroes ESG; Alexiou C; Lyer S; Cicha I
    Int J Nanomedicine; 2024; 19():1645-1666. PubMed ID: 38406599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of acid-stabilized iron oxide nanoparticles and comparison for targeting atherosclerotic plaques: evaluation by MRI, quantitative MPS, and TEM alternative to ambiguous Prussian blue iron staining.
    Scharlach C; Kratz H; Wiekhorst F; Warmuth C; Schnorr J; Genter G; Ebert M; Mueller S; Schellenberger E
    Nanomedicine; 2015 Jul; 11(5):1085-95. PubMed ID: 25659644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Europium doping of superparamagnetic iron oxide nanoparticles enables their detection by fluorescence microscopy and for quantitative analytics.
    Kobayashi Y; Hauptmann R; Kratz H; Ebert M; Wagner S; Taupitz M
    Technol Health Care; 2017; 25(3):457-470. PubMed ID: 27935574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted Molecular Iron Oxide Contrast Agents for Imaging Atherosclerotic Plaque.
    Evans RJ; Lavin B; Phinikaridou A; Chooi KY; Mohri Z; Wong E; Boyle JJ; Krams R; Botnar R; Long NJ
    Nanotheranostics; 2020; 4(4):184-194. PubMed ID: 32637296
    [No Abstract]   [Full Text] [Related]  

  • 9. Molecular and cellular targets of the MRI contrast agent P947 for atherosclerosis imaging.
    Ouimet T; Lancelot E; Hyafil F; Rienzo M; Deux F; Lemaître M; Duquesnoy S; Garot J; Roques BP; Michel JB; Corot C; Ballet S
    Mol Pharm; 2012 Apr; 9(4):850-61. PubMed ID: 22352457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of Europium-Doped Very Small Iron Oxide Nanoparticles to Visualize Neuroinflammation with MRI and Fluorescence Microscopy.
    Millward JM; Ariza de Schellenberger A; Berndt D; Hanke-Vela L; Schellenberger E; Waiczies S; Taupitz M; Kobayashi Y; Wagner S; Infante-Duarte C
    Neuroscience; 2019 Apr; 403():136-144. PubMed ID: 29273325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gadolinium retention in the tunica media of arterial walls-a complementary study using elemental bioimaging and immunogold staining.
    Fingerhut S; Buchholz R; Bücker P; Clasen W; Sperling M; Müller KM; Rehkämper J; Radbruch A; Richter H; Jeibmann A; Karst U
    Metallomics; 2022 Jun; 14(6):. PubMed ID: 35482657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid, metal oxide-peptide amphiphile micelles for molecular magnetic resonance imaging of atherosclerosis.
    Poon C; Gallo J; Joo J; Chang T; Bañobre-López M; Chung EJ
    J Nanobiotechnology; 2018 Nov; 16(1):92. PubMed ID: 30442135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revealing Silver Nanoparticle Uptake by Macrophages Using SR-μXRF and LA-ICP-MS.
    Reifschneider O; Vennemann A; Buzanich G; Radtke M; Reinholz U; Riesemeier H; Hogeback J; Köppen C; Großgarten M; Sperling M; Wiemann M; Karst U
    Chem Res Toxicol; 2020 May; 33(5):1250-1255. PubMed ID: 32286059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-probe molecular MRI for the in vivo characterization of atherosclerosis in a mouse model: Simultaneous assessment of plaque inflammation and extracellular-matrix remodeling.
    Reimann C; Brangsch J; Kaufmann JO; Adams LC; Onthank DC; Thöne-Reineke C; Robinson SP; Hamm B; Botnar RM; Makowski MR
    Sci Rep; 2019 Sep; 9(1):13827. PubMed ID: 31554825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-energy CT imaging of atherosclerotic plaque using novel ultrasmall superparamagnetic iron oxide in hyperlipidemic rabbits.
    Sato H; Fujimoto S; Kawaguchi YO; Nozaki YO; Tomizawa N; Kogure Y; Minamino T
    Acta Radiol; 2023 Apr; 64(4):1718-1724. PubMed ID: 36226361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Addressing K/L-edge overlap in elemental analysis from micro-X-ray fluorescence: bioimaging of tungsten and zinc in bone tissue using synchrotron radiation and laser ablation inductively coupled plasma mass spectrometry.
    VanderSchee CR; Kuter D; Chou H; Jackson BP; Mann KK; Bohle DS
    Anal Bioanal Chem; 2020 Jan; 412(2):259-265. PubMed ID: 31776641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New generation of monomer-stabilized very small superparamagnetic iron oxide particles (VSOP) as contrast medium for MR angiography: preclinical results in rats and rabbits.
    Taupitz M; Schnorr J; Abramjuk C; Wagner S; Pilgrimm H; Hünigen H; Hamm B
    J Magn Reson Imaging; 2000 Dec; 12(6):905-11. PubMed ID: 11105029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beyond blood brain barrier breakdown - in vivo detection of occult neuroinflammatory foci by magnetic nanoparticles in high field MRI.
    Tysiak E; Asbach P; Aktas O; Waiczies H; Smyth M; Schnorr J; Taupitz M; Wuerfel J
    J Neuroinflammation; 2009 Aug; 6():20. PubMed ID: 19660125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the iron oxide-based blood-pool contrast medium VSOP-C184 with gadopentetate dimeglumine for first-pass magnetic resonance angiography of the aorta and renal arteries in pigs.
    Schnorr J; Wagner S; Abramjuk C; Wojner I; Schink T; Kroencke TJ; Schellenberger E; Hamm B; Pilgrimm H; Taupitz M
    Invest Radiol; 2004 Sep; 39(9):546-53. PubMed ID: 15308937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histological validation of iron-oxide and gadolinium based MRI contrast agents in experimental atherosclerosis: the do's and don't's.
    den Adel B; Bovens SM; te Boekhorst B; Strijkers GJ; Poelmann RE; van der Weerd L; Pasterkamp G
    Atherosclerosis; 2012 Dec; 225(2):274-80. PubMed ID: 22882907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.