These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 33289153)
1. Purification, characterization, and crystal structure of YhdA-type azoreductase from Bacillus velezensis. Bafana A; Khan F; Suguna K Proteins; 2021 May; 89(5):483-492. PubMed ID: 33289153 [TBL] [Abstract][Full Text] [Related]
2. Structures of AzrA and of AzrC complexed with substrate or inhibitor: insight into substrate specificity and catalytic mechanism. Yu J; Ogata D; Gai Z; Taguchi S; Tanaka I; Ooi T; Yao M Acta Crystallogr D Biol Crystallogr; 2014 Feb; 70(Pt 2):553-64. PubMed ID: 24531489 [TBL] [Abstract][Full Text] [Related]
3. Enzymatic degradation of sulphonated azo dye using purified azoreductase from facultative Klebsiella pneumoniae. Dixit S; Garg S Folia Microbiol (Praha); 2021 Feb; 66(1):79-85. PubMed ID: 32946071 [TBL] [Abstract][Full Text] [Related]
4. Structural and functional characterization of mercuric reductase from Lysinibacillus sphaericus strain G1. Bafana A; Khan F; Suguna K Biometals; 2017 Oct; 30(5):809-819. PubMed ID: 28894951 [TBL] [Abstract][Full Text] [Related]
5. Mechanistic and Crystallographic Studies of Azoreductase AzoA from Romero E; Savino S; Fraaije MW; Lončar N ACS Chem Biol; 2020 Feb; 15(2):504-512. PubMed ID: 31967777 [TBL] [Abstract][Full Text] [Related]
6. Ancestral reconstruction of mammalian FMO1 enables structural determination, revealing unique features that explain its catalytic properties. Bailleul G; Nicoll CR; Mascotti ML; Mattevi A; Fraaije MW J Biol Chem; 2021; 296():100221. PubMed ID: 33759784 [TBL] [Abstract][Full Text] [Related]
7. Structural investigation into the C-terminal extension of the ene-reductase from Ralstonia (Cupriavidus) metallidurans. Opperman DJ Proteins; 2017 Dec; 85(12):2252-2257. PubMed ID: 28833623 [TBL] [Abstract][Full Text] [Related]
8. Characterization of a thermostable NADPH:FMN oxidoreductase from the mesophilic bacterium Bacillus subtilis. Deller S; Sollner S; Trenker-El-Toukhy R; Jelesarov I; Gübitz GM; Macheroux P Biochemistry; 2006 Jun; 45(23):7083-91. PubMed ID: 16752898 [TBL] [Abstract][Full Text] [Related]
9. Expression and characterization of the genes encoding azoreductases from Bacillus subtilis and Geobacillus stearothermophilus. Sugiura W; Yoda T; Matsuba T; Tanaka Y; Suzuki Y Biosci Biotechnol Biochem; 2006 Jul; 70(7):1655-65. PubMed ID: 16861800 [TBL] [Abstract][Full Text] [Related]
10. The co-existence of cold activity and thermal stability in an Antarctic GH42 β-galactosidase relies on its hexameric quaternary arrangement. Mangiagalli M; Lapi M; Maione S; Orlando M; Brocca S; Pesce A; Barbiroli A; Camilloni C; Pucciarelli S; Lotti M; Nardini M FEBS J; 2021 Jan; 288(2):546-565. PubMed ID: 32363751 [TBL] [Abstract][Full Text] [Related]
11. Characterization of thermostable FMN-dependent NADH azoreductase from the moderate thermophile Geobacillus stearothermophilus. Matsumoto K; Mukai Y; Ogata D; Shozui F; Nduko JM; Taguchi S; Ooi T Appl Microbiol Biotechnol; 2010 May; 86(5):1431-8. PubMed ID: 19997911 [TBL] [Abstract][Full Text] [Related]
12. Cloning and characterization of a Flavin-free oxygen-insensitive azoreductase from Klebsiella oxytoca GS-4-08. Hua JQ; Yu L Biotechnol Lett; 2019 Mar; 41(3):371-378. PubMed ID: 30635809 [TBL] [Abstract][Full Text] [Related]
13. The structural and functional characterization of Malus domestica double bond reductase MdDBR provides insights towards the identification of its substrates. Caliandro R; Polsinelli I; Demitri N; Musiani F; Martens S; Benini S Int J Biol Macromol; 2021 Feb; 171():89-99. PubMed ID: 33412202 [TBL] [Abstract][Full Text] [Related]
14. Molecular cloning and characterization of the gene coding for azoreductase from Bacillus sp. OY1-2 isolated from soil. Suzuki Y; Yoda T; Ruhul A; Sugiura W J Biol Chem; 2001 Mar; 276(12):9059-65. PubMed ID: 11134015 [TBL] [Abstract][Full Text] [Related]