These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

40 related articles for article (PubMed ID: 33289193)

  • 1. Prediction error signaling explains neuronal mismatch responses in the medial prefrontal cortex.
    Casado-Román L; Carbajal GV; Pérez-González D; Malmierca MS
    PLoS Biol; 2020 Dec; 18(12):e3001019. PubMed ID: 33347436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facilitative effect of repetitive presentation of one stimulus on cortical responses to other stimuli in macaque monkeys--a possible neural mechanism for mismatch negativity.
    Takaura K; Fujii N
    Eur J Neurosci; 2016 Feb; 43(4):516-28. PubMed ID: 26613160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-resolved dynamic computational modeling of human EEG recordings reveals gradients of generative mechanisms for the MMN response.
    Poublan-Couzardot A; Lecaignard F; Fucci E; Davidson RJ; Mattout J; Lutz A; Abdoun O
    PLoS Comput Biol; 2023 Dec; 19(12):e1010557. PubMed ID: 38091350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deviance Detection to Natural Stimuli in Population Responses of the Brainstem of Bats.
    Wetekam J; Hechavarría J; López-Jury L; González-Palomares E; Kössl M
    J Neurosci; 2024 Feb; 44(9):. PubMed ID: 38262723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EVIDENCE FOR AUDITORY STIMULUS-SPECIFIC ADAPTATION BUT NOT DEVIANCE DETECTION IN LARVAL ZEBRAFISH BRAINS.
    Wilde M; Poulsen RE; Qin W; Arnold J; Favre-Bulle IA; Mattingley JB; Scott EK; Stednitz SJ
    bioRxiv; 2024 Jun; ():. PubMed ID: 38915708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural field theory of adaptive effects on auditory evoked responses and mismatch negativity in multifrequency stimulus sequences.
    Babaie-Janvier T; Gabay NC; McInnes A; Robinson PA
    Front Hum Neurosci; 2023; 17():1282924. PubMed ID: 38234595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The specificity of stimulus-specific adaptation in human auditory cortex increases with repeated exposure to the adapting stimulus.
    Briley PM; Krumbholz K
    J Neurophysiol; 2013 Dec; 110(12):2679-88. PubMed ID: 24047909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct brain dynamics and networks for processing short and long auditory time intervals.
    Thibault N; Albouy P; Grondin S
    Sci Rep; 2023 Dec; 13(1):22018. PubMed ID: 38086944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiological auditory measures to identify potential cortical markers of tinnitus.
    Caldwell J; Gopal K; Ortu D; Miller S
    Brain Res; 2024 Jun; 1842():149100. PubMed ID: 38942351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the integrity of auditory sensory memory processing in CLN3 disease (Juvenile Neuronal Ceroid Lipofuscinosis (Batten disease)): an auditory evoked potential study of the duration-evoked mismatch negativity (MMN).
    Brima T; Freedman EG; Prinsloo KD; Augustine EF; Adams HR; Wang KH; Mink JW; Shaw LH; Mantel EP; Foxe JJ
    J Neurodev Disord; 2024 Jan; 16(1):3. PubMed ID: 38183037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting Central Auditory Processing Disorders in Awake Mice.
    Dejean C; Dupont T; Verpy E; Gonçalves N; Coqueran S; Michalski N; Pucheu S; Bourgeron T; Gourévitch B
    Brain Sci; 2023 Oct; 13(11):. PubMed ID: 38002499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decoding violated sensory expectations from the auditory cortex of anaesthetised mice: Hierarchical recurrent neural network depicts separate 'danger' and 'safety' units.
    O'Reilly JA; Angsuwatanakul T; Wehrman J
    Eur J Neurosci; 2022 Aug; 56(3):4154-4175. PubMed ID: 35695993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Predictive Role of Low Spatial Frequencies in Automatic Face Processing: A Visual Mismatch Negativity Investigation.
    Lacroix A; Harquel S; Mermillod M; Vercueil L; Alleysson D; Dutheil F; Kovarski K; Gomot M
    Front Hum Neurosci; 2022; 16():838454. PubMed ID: 35360280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roving oddball paradigm elicits sensory gating, frequency sensitivity, and long-latency response in common marmosets.
    O'Reilly JA
    IBRO Neurosci Rep; 2021 Dec; 11():128-136. PubMed ID: 34622244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classical and controlled auditory mismatch responses to multiple physical deviances in anaesthetised and conscious mice.
    O'Reilly JA; Conway BA
    Eur J Neurosci; 2021 Mar; 53(6):1839-1854. PubMed ID: 33289193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. More evidence for a long-latency mismatch response in urethane-anaesthetised mice.
    O'Reilly JA; Angsuwatanakul T
    Hear Res; 2021 Sep; 408():108296. PubMed ID: 34174482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Double-epoch subtraction reveals long-latency mismatch response in urethane-anaesthetized mice.
    O'Reilly JA
    J Neurosci Methods; 2019 Oct; 326():108375. PubMed ID: 31351973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can intensity modulation of the auditory response explain intensity-decrement mismatch negativity?
    O'Reilly JA
    Neurosci Lett; 2021 Nov; 764():136199. PubMed ID: 34461160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cortical Microcircuit Mechanisms of Mismatch Negativity and Its Underlying Subcomponents.
    Ross JM; Hamm JP
    Front Neural Circuits; 2020; 14():13. PubMed ID: 32296311
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.