These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 33289412)

  • 1. Role of Yeasts in the Cranberry Fruit Rot Disease Complex.
    Zalewski ZD; Page R; Lankau RA; McManus PS
    Plant Dis; 2021 Aug; 105(8):2141-2148. PubMed ID: 33289412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Calcium Salts on the Cranberry Fruit Rot Disease Complex.
    Blodgett AB; Caldwell RW; McManus PS
    Plant Dis; 2002 Jul; 86(7):747-752. PubMed ID: 30818571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The microbial ecology of wine grape berries.
    Barata A; Malfeito-Ferreira M; Loureiro V
    Int J Food Microbiol; 2012 Feb; 153(3):243-59. PubMed ID: 22189021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Sampling Strategies for Determining Incidence of Cranberry Fruit Rot and Fruit Rot Fungi.
    McManus PS; Caldwell RW; Voland RP; Best VM; Clayton MK
    Plant Dis; 2003 May; 87(5):585-590. PubMed ID: 30812963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New Insights into the Fungal Diversity of Cranberry Fruit Rot in Québec Farms Through a Large-Scale Molecular Analysis.
    Conti M; Cinget B; Labbé C; Asselin Y; Bélanger RR
    Plant Dis; 2022 Jan; 106(1):215-222. PubMed ID: 34515508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficacy of gaseous ozone to counteract postharvest table grape sour rot.
    Pinto L; Caputo L; Quintieri L; de Candia S; Baruzzi F
    Food Microbiol; 2017 Sep; 66():190-198. PubMed ID: 28576368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The epiphytic microbiota of sour rot-affected grapes differs minimally from that of healthy grapes, indicating causal organisms are already present on healthy berries.
    Hall ME; O'Bryon I; Wilcox WF; Osier MV; Cadle-Davidson L
    PLoS One; 2019; 14(3):e0211378. PubMed ID: 30917111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Simulated Hail Events and Subsequent Fungicide Applications on Cranberry Fruit Rot Incidence and Yield.
    Wells LD; McManus PS
    Plant Dis; 2013 Sep; 97(9):1207-1211. PubMed ID: 30722461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New insights into the ecological interaction between grape berry microorganisms and Drosophila flies during the development of sour rot.
    Barata A; Santos SC; Malfeito-Ferreira M; Loureiro V
    Microb Ecol; 2012 Aug; 64(2):416-30. PubMed ID: 22438040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First Report of Early Rot of Cranberry Caused by Phyllosticta vaccinii in Wisconsin.
    McManus PS
    Plant Dis; 1998 Mar; 82(3):350. PubMed ID: 30856872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Native yeast and non-yeast fungal communities of Cabernet Sauvignon berries from two Washington State vineyards, and persistence in spontaneous fermentation.
    Wang X; Schlatter DC; Glawe DA; Edwards CG; Weller DM; Paulitz TC; Abatzoglou JT; Okubara PA
    Int J Food Microbiol; 2021 Jul; 350():109225. PubMed ID: 34023678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First Report of Gliocephalotrichum bulbilium Causing Cranberry Fruit Rot in New Jersey and Massachusetts.
    Constantelos C; Doyle VP; Litt A; Oudemans PV
    Plant Dis; 2011 May; 95(5):618. PubMed ID: 30731961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From grape berries to wine: population dynamics of cultivable yeasts associated to "Nero di Troia" autochthonous grape cultivar.
    Garofalo C; Tristezza M; Grieco F; Spano G; Capozzi V
    World J Microbiol Biotechnol; 2016 Apr; 32(4):59. PubMed ID: 26925621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volatiles of Grape Inoculated with Microorganisms: Modulation of Grapevine Moth Oviposition and Field Attraction.
    Tasin M; Larsson Herrera S; Knight AL; Barros-Parada W; Fuentes Contreras E; Pertot I
    Microb Ecol; 2018 Oct; 76(3):751-761. PubMed ID: 29526022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prevalence and spatial distribution of cranberry fruit rot pathogens in British Columbia, Canada and potential fungicides for fruit rot management.
    Wood B; McBride E; Nabetani K; Griffin T; Sabaratnam S
    Front Plant Sci; 2023; 14():1274094. PubMed ID: 38023868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Molecular Assay Allows the Simultaneous Detection of 12 Fungi Causing Fruit Rot in Cranberry.
    Conti M; Cinget B; Vivancos J; Oudemans P; Bélanger RR
    Plant Dis; 2019 Nov; 103(11):2843-2850. PubMed ID: 31469361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The emerging contribution of social wasps to grape rot disease ecology.
    Madden AA; Boyden SD; Soriano JN; Corey TB; Leff JW; Fierer N; Starks PT
    PeerJ; 2017; 5():e3223. PubMed ID: 28462032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation, selection and evaluation of yeasts for use in fermentation of coffee beans by the wet process.
    de Melo Pereira GV; Soccol VT; Pandey A; Medeiros AB; Andrade Lara JM; Gollo AL; Soccol CR
    Int J Food Microbiol; 2014 Oct; 188():60-6. PubMed ID: 25087206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First Report of Aspergillus carbonarius Causing Sour Rot of Table Grapes (Vitis vinifera) in California.
    Rooney-Latham S; Janousek CN; Eskalen A; Gubler WD
    Plant Dis; 2008 Apr; 92(4):651. PubMed ID: 30769622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yeast-like fungi and yeasts in withered grape carposphere: Characterization of Aureobasidium pullulans population and species diversity.
    Lorenzini M; Zapparoli G
    Int J Food Microbiol; 2019 Jan; 289():223-230. PubMed ID: 30391797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.