These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 33289517)

  • 1. Integration of diverse DNA substrates by a casposase can be targeted to R-loops in vitro by its fusion to Cas9.
    Lau CH; Bolt EL
    Biosci Rep; 2021 Jan; 41(1):. PubMed ID: 33289517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Casposase structure and the mechanistic link between DNA transposition and spacer acquisition by CRISPR-Cas.
    Hickman AB; Kailasan S; Genzor P; Haase AD; Dyda F
    Elife; 2020 Jan; 9():. PubMed ID: 31913120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Casposon integration shows strong target site preference and recapitulates protospacer integration by CRISPR-Cas systems.
    Béguin P; Charpin N; Koonin EV; Forterre P; Krupovic M
    Nucleic Acids Res; 2016 Dec; 44(21):10367-10376. PubMed ID: 27655632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The casposon-encoded Cas1 protein from Aciduliprofundum boonei is a DNA integrase that generates target site duplications.
    Hickman AB; Dyda F
    Nucleic Acids Res; 2015 Dec; 43(22):10576-87. PubMed ID: 26573596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence motifs recognized by the casposon integrase of Aciduliprofundum boonei.
    Béguin P; Chekli Y; Sezonov G; Forterre P; Krupovic M
    Nucleic Acids Res; 2019 Jul; 47(12):6386-6395. PubMed ID: 31114911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence specific integration by the family 1 casposase from Candidatus Nitrosopumilus koreensis AR1.
    Wang X; Yuan Q; Zhang W; Ji S; Lv Y; Ren K; Lu M; Xiao Y
    Nucleic Acids Res; 2021 Sep; 49(17):9938-9952. PubMed ID: 34428286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Casposons: mobile genetic elements that gave rise to the CRISPR-Cas adaptation machinery.
    Krupovic M; Béguin P; Koonin EV
    Curr Opin Microbiol; 2017 Aug; 38():36-43. PubMed ID: 28472712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How type II CRISPR-Cas establish immunity through Cas1-Cas2-mediated spacer integration.
    Xiao Y; Ng S; Nam KH; Ke A
    Nature; 2017 Oct; 550(7674):137-141. PubMed ID: 28869593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity.
    Krupovic M; Makarova KS; Forterre P; Prangishvili D; Koonin EV
    BMC Biol; 2014 May; 12():36. PubMed ID: 24884953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Mobility of Casposons, Self-Synthesizing Transposons at the Origin of the CRISPR-Cas Immunity.
    Krupovic M; Shmakov S; Makarova KS; Forterre P; Koonin EV
    Genome Biol Evol; 2016 Jan; 8(2):375-86. PubMed ID: 26764427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-Cas immunity and mobile DNA: a new superfamily of DNA transposons encoding a Cas1 endonuclease.
    Hickman AB; Dyda F
    Mob DNA; 2014; 5():23. PubMed ID: 25180049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active in vivo translocation of the Methanosarcina mazei Gö1 Casposon.
    Gehlert FO; Nickel L; Vakirlis N; Hammerschmidt K; Vargas Gebauer HI; Kießling C; Kupczok A; Schmitz RA
    Nucleic Acids Res; 2023 Jul; 51(13):6927-6943. PubMed ID: 37254817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spacer capture and integration by a type I-F Cas1-Cas2-3 CRISPR adaptation complex.
    Fagerlund RD; Wilkinson ME; Klykov O; Barendregt A; Pearce FG; Kieper SN; Maxwell HWR; Capolupo A; Heck AJR; Krause KL; Bostina M; Scheltema RA; Staals RHJ; Fineran PC
    Proc Natl Acad Sci U S A; 2017 Jun; 114(26):E5122-E5128. PubMed ID: 28611213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR-Cas adaptation in Escherichia coli requires RecBCD helicase but not nuclease activity, is independent of homologous recombination, and is antagonized by 5' ssDNA exonucleases.
    Radovcic M; Killelea T; Savitskaya E; Wettstein L; Bolt EL; Ivancic-Bace I
    Nucleic Acids Res; 2018 Nov; 46(19):10173-10183. PubMed ID: 30189098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cas4-Dependent Prespacer Processing Ensures High-Fidelity Programming of CRISPR Arrays.
    Lee H; Zhou Y; Taylor DW; Sashital DG
    Mol Cell; 2018 Apr; 70(1):48-59.e5. PubMed ID: 29602742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptation processes that build CRISPR immunity: creative destruction, updated.
    Lau CH; Reeves R; Bolt EL
    Essays Biochem; 2019 Jul; 63(2):227-235. PubMed ID: 31186288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetric positioning of Cas1-2 complex and Integration Host Factor induced DNA bending guide the unidirectional homing of protospacer in CRISPR-Cas type I-E system.
    Yoganand KN; Sivathanu R; Nimkar S; Anand B
    Nucleic Acids Res; 2017 Jan; 45(1):367-381. PubMed ID: 27899566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR type II-A subgroups exhibit phylogenetically distinct mechanisms for prespacer insertion.
    Van Orden MJ; Newsom S; Rajan R
    J Biol Chem; 2020 Aug; 295(32):10956-10968. PubMed ID: 32513871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA replication roadblocks caused by Cascade interference complexes are alleviated by RecG DNA repair helicase.
    Killelea T; Hawkins M; Howard JL; McGlynn P; Bolt EL
    RNA Biol; 2019 Apr; 16(4):543-548. PubMed ID: 30096986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spermidine strongly increases the fidelity of
    Plateau P; Moch C; Blanquet S
    J Biol Chem; 2019 Jul; 294(29):11311-11322. PubMed ID: 31171718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.