These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 33289547)
1. Separation and Enrichment of Yeast Liu P; Liu H; Yuan D; Jang D; Yan S; Li M Anal Chem; 2021 Jan; 93(3):1586-1595. PubMed ID: 33289547 [TBL] [Abstract][Full Text] [Related]
2. Microfluidic Separation and Enrichment of Zhang T; Cain AK; Semenec L; Liu L; Hosokawa Y; Inglis DW; Yalikun Y; Li M Anal Chem; 2023 Jan; 95(4):2561-2569. PubMed ID: 36656064 [TBL] [Abstract][Full Text] [Related]
3. Length-based separation of Liu P; Liu H; Semenec L; Yuan D; Yan S; Cain AK; Li M Microsyst Nanoeng; 2022; 8():7. PubMed ID: 35127130 [TBL] [Abstract][Full Text] [Related]
4. Investigation of particle lateral migration in sample-sheath flow of viscoelastic fluid and Newtonian fluid. Yuan D; Zhang J; Yan S; Peng G; Zhao Q; Alici G; Du H; Li W Electrophoresis; 2016 Aug; 37(15-16):2147-55. PubMed ID: 27140330 [TBL] [Abstract][Full Text] [Related]
5. A novel viscoelastic-based ferrofluid for continuous sheathless microfluidic separation of nonmagnetic microparticles. Zhang J; Yan S; Yuan D; Zhao Q; Tan SH; Nguyen NT; Li W Lab Chip; 2016 Oct; 16(20):3947-3956. PubMed ID: 27722618 [TBL] [Abstract][Full Text] [Related]
6. A Dean-flow-coupled interfacial viscoelastic fluid for microparticle separation applied in a cell smear method. Shi X; Liu L; Cao W; Zhu G; Tan W Analyst; 2019 Oct; 144(20):5934-5946. PubMed ID: 31483419 [TBL] [Abstract][Full Text] [Related]
7. Microfluidic co-flow of Newtonian and viscoelastic fluids for high-resolution separation of microparticles. Tian F; Zhang W; Cai L; Li S; Hu G; Cong Y; Liu C; Li T; Sun J Lab Chip; 2017 Sep; 17(18):3078-3085. PubMed ID: 28805872 [TBL] [Abstract][Full Text] [Related]
8. Viscoelastic microfluidics for enhanced separation resolution of submicron particles and extracellular vesicles. Hettiarachchi S; Ouyang L; Cha H; Hansen HHWB; An H; Nguyen NT; Zhang J Nanoscale; 2024 Feb; 16(7):3560-3570. PubMed ID: 38289397 [TBL] [Abstract][Full Text] [Related]
9. Enhanced viscoelastic focusing of particle in microchannel. Fan LL; Zhao Z; Tao YY; Wu X; Yan Q; Zhe J; Zhao L Electrophoresis; 2020 Jun; 41(10-11):973-982. PubMed ID: 31900948 [TBL] [Abstract][Full Text] [Related]
10. Elastic-inertial separation of microparticle in a gradually contracted microchannel. Tian ZZ; Gan CS; Fan LL; Wang JC; Zhao L Electrophoresis; 2022 Nov; 43(21-22):2217-2226. PubMed ID: 36084168 [TBL] [Abstract][Full Text] [Related]
12. Charge-based separation of particles and cells with similar sizes via the wall-induced electrical lift. Thomas C; Lu X; Todd A; Raval Y; Tzeng TR; Song Y; Wang J; Li D; Xuan X Electrophoresis; 2017 Jan; 38(2):320-326. PubMed ID: 27507438 [TBL] [Abstract][Full Text] [Related]
13. A passive microfluidic device for continuous microparticle enrichment. Fan LL; Zhu XL; Yan Q; Zhe J; Zhao L Electrophoresis; 2019 Mar; 40(6):1000-1009. PubMed ID: 30488639 [TBL] [Abstract][Full Text] [Related]
14. Investigation of viscoelastic focusing of particles and cells in a zigzag microchannel. Yuan D; Yadav S; Ta HT; Fallahi H; An H; Kashaninejad N; Ooi CH; Nguyen NT; Zhang J Electrophoresis; 2021 Nov; 42(21-22):2230-2237. PubMed ID: 34396540 [TBL] [Abstract][Full Text] [Related]
15. Elasto-Inertial Pinched Flow Fractionation for Continuous Shape-Based Particle Separation. Lu X; Xuan X Anal Chem; 2015 Nov; 87(22):11523-30. PubMed ID: 26505113 [TBL] [Abstract][Full Text] [Related]
16. Impedance-based viscoelastic flow cytometry. Serhatlioglu M; Asghari M; Tahsin Guler M; Elbuken C Electrophoresis; 2019 Mar; 40(6):906-913. PubMed ID: 30632175 [TBL] [Abstract][Full Text] [Related]
17. Continuous separation of microparticles in a microfluidic channel via the elasto-inertial effect of non-Newtonian fluid. Nam J; Lim H; Kim D; Jung H; Shin S Lab Chip; 2012 Apr; 12(7):1347-54. PubMed ID: 22334376 [TBL] [Abstract][Full Text] [Related]
18. Continuous plasma extraction under viscoelastic fluid in a straight channel with asymmetrical expansion-contraction cavity arrays. Yuan D; Zhang J; Sluyter R; Zhao Q; Yan S; Alici G; Li W Lab Chip; 2016 Oct; 16(20):3919-3928. PubMed ID: 27714019 [TBL] [Abstract][Full Text] [Related]
19. Separation of exfoliated tumor cells from viscoelastic pleural effusion using a microfluidic sandwich structure. Shi X; Tan W; Liu L; Cao W; Wang Y; Zhu G Anal Bioanal Chem; 2020 Sep; 412(22):5513-5523. PubMed ID: 32577800 [TBL] [Abstract][Full Text] [Related]
20. Label-free isolation of rare tumor cells from untreated whole blood by interfacial viscoelastic microfluidics. Tian F; Cai L; Chang J; Li S; Liu C; Li T; Sun J Lab Chip; 2018 Nov; 18(22):3436-3445. PubMed ID: 30328446 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]